ON THE MECHANISMS OF

PARTICLE ACCELERATION IN ASTROPHYSICAL SOURCES

Elena Amato

INAF-Osservatorio Astrofisico di Arcetri

WHAT WE NEED TO EXPLAIN

DIFFUSIVE SHOCK ACCELERATION (2ND ORDER TEST PARTICLES)

AVERAGE ENERGY GAIN $G = \frac{\Delta E}{E} \approx \left(\frac{V}{c}\right)^2$

INITIALLY THOUGHT IN CONNECTION WITH CLOUDS BUT LATER UNDERSTOOD TO WORK WITH MAGNETIC PERTURBATIONS:

- V≈V_A
- SLOW PROCESS UNLESS RELATIVISTIC TURBULENCE
- NO HOPE OF REACHING HIGH ENERGY

INTERACTION MOST EFFECTIVE AT RESONANCE: +r

$$\frac{1}{\tau_s} = D_\alpha = \lim_{t \to \infty} \left\langle \frac{\Delta \theta \Delta \theta}{t} \right\rangle = 2\pi^2 \Omega_L \left(\frac{\delta B}{B_0} \right)^2 = 2\pi^2 \frac{v}{r_L} \frac{k_{\rm res} W(k_{\rm res})}{B_0^2}$$
$$D_{zz} = \frac{1}{3} v \lambda = \frac{1}{3} v^2 \tau_s$$
$$D_{pp} = \frac{1}{3} \frac{\langle \Delta p \Delta p \rangle}{\tau_s} = \frac{1}{3} \frac{V_A^2 p^2}{v^2 \tau_s}$$

DIFFUSION IN MOMENTUM SPACE INEVITABLY ASSOCIATED WITH SPATIAL DIUFFUSION

FERMI II AND CR REACCELERATION

THE CR TRANSPORT EQUATION (NO LOSSES)

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial z} = Q + \frac{\partial}{\partial z} \left(D_{zz} \frac{\partial f}{\partial z} \right) + \frac{1}{3} \left(\frac{du}{dz} \right) p \frac{\partial f}{\partial p} + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right)$$

WHEN SOLVED THROUGH CODES LIKE GALPROP (Trotta et al 06) OR DRAGON (Di Bernardo et al 10) RE-ACCELERATION FOUND TO BE VERY RELEVANT

ABOUT 50% OF THE TOTAL CR POWER FROM THIS PROCESS (Drury & Strong 17)

CRs WOULD RESULT IN A MAJOR SOURCE OF DAMPING OF INTERSTELLAR TURBULENCE

HOWEVER, CAN THIS PLAY ANY ROLE IN CLOUDS?

DIFFUSIVE SHOCK ACCELERATION (1ST ORDER TEST PARTICLES)

UPSTREAM

PARTICLE GAINS ENERGY SOMETIMES LOSES ENERGY SOME OTHERS

AVERAGE ENERGY GAIN
$$G = \frac{\Delta E}{E} \approx \left(\frac{V}{c}\right)^2$$

AT A SHOCK

- PARTICLE GAINS ENERGY EACH TIME IT CROSSES THE SHOCK
- FUNDAMENTAL ASSUMPTION: ISOTROPIZATION ON BOTH SIDES OF THE SHOCK

DOWNSTREAM

DIFFUSIVE SHOCK ACCELERATION (TEST PARTICLES) U_1 Energy gain per crossing $\frac{\Delta E}{E} = \frac{4(u_1 - u_2)}{3v}$ Z **T**2 ESCAPE PROBABILITY $P_{ m esc} = 4 u_2 / v$ DOWNSTREAM UPSTREAM T_1 mr(p_{th2}) POWER LAW SPECTRA $\gamma_e = 1 + \frac{P_{\text{esc}}}{\Delta E/E} = \frac{2+R}{R-1}$

ONLY DEPENDENT ON COMPRESSION RATIO!

INDEPENDENT OF SCATTERING PROPERTIES!!!

FOR STRONG SHOCKS: $u_1/u_2=4 \approx 4 \approx 2$

PARTICLE ISOTROPIZATION **COLLISIONLESS PLASMA...** Magnetic field WAVE-PARTICLE INTERACTIONS!!! ion PITCH ANGLE DIFFUSION: $D_{\alpha} = \frac{\pi}{8} \Omega_L \left(\frac{\delta B}{B_0}\right)^2$ ->SPATIAL DIFFUSION $D(p) = \frac{4}{3\pi} \left(\frac{B_0}{\delta B}\right)^2 cr_L$ $t_{\rm acc1} = \frac{E}{dE/dt} = \frac{t_{\rm diff}}{\Delta E/E} = \frac{3v}{4(u_1 - u_2)} \frac{4D_1}{u_1 v}$

ACCELERATION TIME DEPENDS ON TURBULENCE LEVEL $t_{acc} = \frac{3}{u_1 - u_2} \left\{ \frac{D_1}{u_1} + \frac{D_2}{u_2} \right\}$

MAXIMUM ACHIEVABLE ENERGY DEPENDS ON TURBULENCE LEVEL $t_{acc}(E_{MAX}) = \min(t_{age}, t_{loss})$

✓ IF ● SAME RESPONSIBLE FOR CR CONFINEMENT IN THE GALAXY: E_{max}~GeV

 \checkmark IF \blacksquare \sim B₀, E_{max} \sim 10³-10⁴ GeV (Lagage & Cesarsky 83)

•AMPLIFIED B IS REQUIRED TO REACH THE KNEE

PARTICLE DIFFUSION AND WAVE GROWTH

IF CR ARE ISOTROPIZED BY THE WAVES ...

BEFORE SCATTERING:
$$P_{CR} = n_{CR} m_{R} v_{d}$$

AFTER SCATTERING: $P_{CR} = n_{CR} m_{R} v_{A}$
FOR RESONANT
ALFVÉN WAVES
$$\tau^{-1} = D_{\alpha} = \frac{\pi}{8} \Omega \left(\frac{\delta B}{B_{0}}\right)^{2}$$

$$\frac{dP_{CR}}{dt} = \frac{dP_w}{dt} = \frac{1}{v_A} \frac{dE_w}{dt} = \frac{1}{v_A} 2\gamma_w \frac{\delta B^2}{8\pi} \quad \begin{array}{c} \text{momentum has} \\ \text{gone to the waves} \end{array}$$

$$\gamma_{w} = \frac{\pi}{4} \frac{n_{CR}^{*}}{n_{i}} \Omega_{0} \frac{(v_{d} - v_{A})}{v_{A}} \text{ with } n_{CR}^{*} = n_{CR} \left(p > \frac{eB}{ck} \right)$$
SUPERALFVÉNIC STREAMING OF CRs >> WAVE GROWTH

+ EFFICIENT ACCELERATION 🕬 SHOCK MODIFICATION!!!!

DIFFERENT ENERGY PARTICLES HAVE DIFFERENT DIFFUSION LENGTHS
→EXPERIENCE DIFFERENT R (<4 AT LOW EN, >4 AT HIGH EN)
→SPECTRUM BECOMES CONCAVE (STEEP AT LOW EN. FLAT AT HIGH)

BASIC PREDICTIONS OF NL-DSA

BACK-REACTION OF CRs

MAGNETIC FIELD AMPLIFICATION

♦ BACK-REACTION OF AMPLIFIED FIELD

TWO-FLUIDS: Drury & co.

MONTECARLO: Ellison & co.

FINITE DIFFERENCE: Berezhko, Volk & co. KINETIC: Amato & Blasi 05,06; Blasi+ 08 Caprioli+ 08,09,10,11

HINTS OF EFFICIENT ACCELERATION:

COMPRESSION RATIO > 4:

CD VS SHOCK IN TYCHO (Warren+ 05)

AND SN1006 (Cassam-Chenaii+ 08) AND

EMISSION PROFILES (Morlino+ 10)

T₂ IS LOWER THAN EXPECTED: IN RCW86

 $T_2 \sim 1/10 T_{RH}$ (Helder+ 09, Morlino+ 13)

CONCAVE SPECTRA: RADIO SNRs (Reynolds & Ellison 92)

AND SED FITTING OF SN1006 AND RCW86 (Vink 12)

B-FIELD LARGELY AMPLIFIED

AMPLIFICATION NEEDED IN THE UPSTREAM

Counts (a.u.)

REPRODUCING THE X-RAY SPATIAL EMISSION PROFILE **IN SN1006**

Morlino+ 10

"STANDARD" GROWTH RATE ONLY APPLIES WHEN

OTHERWISE GROWTH OF RESONANT MODES IS SUPPRESSED NON RESONANT MODES (Bell 04, Amato & Blasi 09) BECOME DOMINANT

CR CURRENT INDUCES
 COMPENSATING CURRENT IN PLASMA

• $\vec{J}_{ret} \times \vec{B}$ INDUCES TRANSVERSE PLASMA MOTION

RESULTING CURRENT ACTS AS A SOURCE OF B

FOR RIGHT-HAND POLARIZED
 WAVES, FIELD LINES ARE STRETCHED:
 FIELD IS AMPLIFIED

VERY LARGE FIELD ON VERY SMALL SCALES

EFFICIENT FOR SCATTERING?

SATURATION & SCATTERING

- B-FIELD EASILY AMPLIFIED TO FEW X 100 §G (Riquelme & Spitkovsky 09, Caprioli & Spitkovsky 14)
- EFFECTIVE INVERSE CASCADING PROVEN BY NUMERICAL WORK

(Caprioli & Spitkovsky 14): SCALE GROWS QUICKLY AND SCATTERING IS

PARTICLE ACCELERATION AND MFA: PIC SIMULATIONS

Caprioli & Spitkovsky 14

RESULTS FROM PIC SIMULATIONS

TURBULENCE IN THE UPSTREAM SEEDED BY THE CURRENT CARRIED BY THE ESCAPING PARTICLES

IF SHOCK MACH NUMBER LARGE ENOUGH, FASTEST INSTABILITY IS -4 -3.5 -BELL'S

GROWING MODES ARE SMALL SCALE, BUT QUICKLY GROW TO LARGER SCALES.

CLOSE TO SHOCK PARTICLES START BOHM DIFFUSION IN AMPLIFIED FIELD AND A PRECURSOR IS FORMED

SATURATION AT $(\delta B/B_0)^2 \approx M_A$

ACCELERATION EFFICIENCY 10-15%

PARTICLE INJECTION

Caprioli + 15

- SHOCK FRONT REFORMS QUASI-PERIODICALLY ON ION-CYCLOTRON TIME
- INJECTION BY CHANCE OF 1-FEW% OF THE IONS
- 10% EFFICIENCY

RELEASED SPECTRUM

- MFA DUE TO CURRENT OF ESCAPING PARTICLES
- GROWTH RATE PROPTO J_{CR} WHICH DEPENDS ON SPECTRUM AT THE SHOCK, P_{MAX} AND V_{S}

SHOCKS IN PARTIALLY IONIZED PLASMAS

BALMER DIAGNOSTICS

IN RCW 86 50% DEDUCED FROM BALMER LINES STUDY (Helder et al 09): T_{i,2} vs V_s

BALMER DOMINATED SHOCKS

(Chevalier & Raymond 78, Heng & McCray 07, Heng et al 07, van Adelsberg et al 08)

•ISM IS NOT FULLY IONIZED •NEUTRAL ATOMS EMIT BALMER LINES •BROAD AND NARROW COMPONEN TELL DIFFERENT STORIES

●BROAD BALMER LINE ■ DOWNSTREAM T_{ION}
 ●EFFICIENT CR ACCELERATION ™ LOWER T_{ION} ™NARROWER BROAD LINE
 ●IN RCW86 ₩ 50-60 % INFERRED FROM NARROW BROAD LINES (Helder et al. 09)

SPECTRA ARE ALWAYS STEEPER THAN 2 EVEN FOR HIGH MACH NUMBER SHOCKS 10 NLDSA with ECR= 10% test-particle with neutral fraction = 0 test-particle with neutral fraction = 0.5 E/GeV = 4.5 100 1 GeV 1000 4 V_{sh}= 2000 km/s 0.1 $n_{0,tot} = 0.1 \text{ cm}^{-3}$ 3.5 10 GeV $B_0 = 10 \, \mu G$ slope 0.01 3 -1 2 3 -2 0 1 p/(m_p c) 100 GeV 2.5 1 TeV 2 1.5 Blasi+ 12, 1000 Morlino+ 13,14

TEST PARTICLE SPECTRA IN THE PRESENCE OF NEUTRALS

V_{shock} [km/s]

- A COMBINATION OF THEORY, OBSERVATIONS AND SIMULATIONS ARE UNVEILING THE PHYSICS OF PARTICLE ACCELERATION AT SNR SHOCKS:
- DIFFUSIVE SHOCK ACCELERATION IN THE EFFICIENT REGIME
- TURBULENCE SELF-GENERATION
- PARTICLE INJECTION
- MAXIMUM ENERGY
- RELEASED PARTICLE SPECTRUM
- SHOCKS IN PARTIALLY NEUTRAL PLASMAS

AND A QUESTION

IS ANY OF THIS USEFUL FOR THIS COMMUNITY?