The influence of cosmic rays on the chemistry in Sagittarius B2(N)

Mélisse Bonfand

A. Belloche, K. M. Menten, R. Garrod

Sagittarius B2

- Located in the CMZ, close to the galactic center
- One of the most prominent regions forming high-mass stars in our galaxy
- It contains several active sites of high-mass star formation
- It harbors a great variety of Complex Organic Molecules (COMs)

* expected to form in warm and dense regions
* expected to form in the ices at the surface of dust grains
* formation pathways still poorly understood

Investigating the complex organic chemistry

Observations

EMoCa (Exploring Molecular Complexity with ALMA) survey

- 3 mm (84 114 GHz)
- High angular resolution (1.6") and sensitivity (3 mJy/beam)
- Targets Sgr B2(N)

Chemical modeling

MAGICKAL (Model for Astrophysical Gas and Ice Chemical Kinetics And Layering) (Garrod 2013)

Goals

- Test the predictions of chemical models (constrain parameters, e.g cosmic rays)
- Better understand pathways that lead to the formation of COMs

Observations

Hot cores in Sgr B2(N)

Map of spectral line density (Bonfand et al. 2017)

Chemical composition of the hot cores

We derived chemical compositions by fitting all emission lines assuming LTE

Part of the continuum-subtracted observed spectrum

Source	#species	#isotopologs	#excited
N2	52	49	70
N3	24	20	16
N4	20	10	5
N5	23	13	7

Chemical composition of the hot cores

Abundances with respect to methanol

Chemical modeling

MAGICKAL: Chemistry

- Chemical network: 1333 species \rightarrow 13370 chemical reactions
- 3 phases: gas-phase , grain/ice-surface, ice mantle
- Modified rate equations (Garrod 2008)

Cosmic rays in the code

- Main source of ionization
- Formation of radicals at the surface of dust grains by photodissociation
- Desorption of surface species
- Cosmic ray ionization rate (CRIR)
- Our model uses the standard value 1.3x10⁻¹⁷ s⁻¹ (Spitzer & Tomasko1968)
- Higher CRIR expected towards the galactic center:
 - **★ ≈ 10-15 s-1** in diffuse CMZ gas (Oka et al. 2005)
 - $* \approx 10^{-16} \text{ s}^{-1}$ in the Sgr B2 envelope (van der Tak et al. 2006)
 - **★ ≈ 10-14 s**-1 towards the Brick (Clarke et al. 2013)

MAGICKAL: Physical evolution

- Physico-chemical evolution: starting from the cold pre-stellar phase, followed by the free-fall collapse of the cloud, through the warm-up of the dense core
- We derived physical profiles based on observational constraints

Sgr B2 (N2)

MAGICKAL: Physical evolution

- Physico-chemical evolution: starting from the cold pre-stellar phase, followed by the free-fall collapse of the cloud, through the warm-up of the dense core
- We derived physical profiles based on observational constraints

Sgr B2 (N2)

MAGICKAL: Results

	C ₂ H ₅ OH
	CH ₃ CN
	C ₂ H ₅ CN
	CH ₃ OCHO
(-	C ₂ H ₃ CN

1	
('	── CH ₃ OH
	── NH ₂ CHO
	— CH ₃ CHO
	── CH ₃ SH
(

Influence of cosmic rays

Comparison with other chemical models

➤ Allen et al. (2018) used a gas-grain chemical code (n = 10⁷ cm⁻³, T = 10 → 500 K over 52 kyr) to reproduce abundances observed towards G35.2-0.74 A

Comparison with observations

Abundances with respect to methanol

Summary

- We characterized the hot cores in Sgr B2(N): physical properties and chemical composition
- We derived physical profiles based on observational constraints
- We studied the influence of cosmic rays on the gas-phase abundances of COMs using the chemical kinetics code MAGICKAL

Work in progress

- Investigating the impact of cosmic rays on the chemical reactions involved in the formation/destruction of COMs using the chemical code MAGICKAL
- * Comparing our results with other models
- * Constraining the cosmic ray ionization rate towards Sgr B2(N) by comparing the predictions of the model with observations

