#### Heterogeneous Catalysis of Organic Molecules in Harsh Environments

#### J.R. Brucato

INAF-Arcetri Astrophysical Observatory, Firenze Italy jbrucato@arcetri.astro.it

Cosmic Rays – the salt of the star formation recipe 2-4 May 2018, Firenze



# Talk Outline





Gail 2004

#### ISM, Comets and Interplanetary Dust Particles inventory SiO<sub>2</sub>, MgO, FeO, Fe<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, ZrO<sub>2</sub>, Al<sub>x</sub>O<sub>y</sub> Oxides: Silicon Carbide: SiC a-Carbon Sulfides: FeS, NiS Olivine: $(Mg,Fe)_2SiO_4$ Silicates Pyroxene: (Mg,Fe)SiO<sub>4</sub> Spinel: MgAl<sub>2</sub>O<sub>4</sub> Diopsite: CaMgSi<sub>2</sub>O<sub>4</sub> Melilite: (Ca,Na)<sub>2</sub>(Al,Mg)[(Si,Al)<sub>2</sub>O<sub>7</sub>] Carbonates Calcite: CaCO<sub>3</sub> Dolomite: $CaMg(CO_3)_2$

The role of minerals and metal oxides on prebiotic processes. A general overview

- Minerals can accumulate the prebiotic precursors;
- Minerals can act as catalyst, reducing the activation energy for the formation of products;
- Minerals can tune the selectivity of prebiotic syntheses;
- Minerals may act as a template;
- Minerals are benign environments to preserve newly formed biomolecules from degradation;

## Some Facts

 $\checkmark$  Minerals: pivotal role in the prebiotic evolution of complex chemical systems by

- mediating the effects of ion and photon radiation
- influencing the photostability of bio-molecules
- catalyzing important chemical reactions
- protecting molecules against degradation

✓ Study the photochemistry and the photophysics of <u>biomolecules</u> in the presence of mineral matrices, to investigate both the survivability when exposed to physical and chemical processes occurring in extraterrestrial environments.



#### Minerals: Metal Oxides, Hydroxides and Silicates (am & cry)

#### Molecules: Nucleobases, Nucleosites, Nucleotides, Aminoacids

|              | DHN | Glu | Arg | Leu | Gly | Isoval | Nucleobeses | Nucleosites | Nucleotides |
|--------------|-----|-----|-----|-----|-----|--------|-------------|-------------|-------------|
|              |     |     |     |     |     |        |             |             |             |
| Oligoclasio  |     |     |     |     |     |        | Х           | Х           | Х           |
| Lizardite    | Х   |     |     |     | Х   |        | Х           | Х           | Х           |
| Pirite       | Х   |     |     |     | Х   |        |             | Х           | Х           |
| Mimetite     |     |     |     |     |     | Х      | Х           | Х           | Х           |
| Natrolite    | Х   |     |     |     |     | Х      | Х           | Х           | Х           |
| Serpentinite | Х   |     |     |     | Х   | Х      | Х           | Х           |             |
| Brucite      | Х   |     |     |     | Х   | Х      | Х           | Х           |             |
| Olivine      | Х   |     |     |     | Х   |        | Х           | Х           | Х           |
| SiO2         |     | Х   | Х   | Х   |     |        |             |             |             |

#### Synthetic Silicate Produced in Laboratory

#### Amorphous silicates

Laser ablation



Thin film

Fluffy

#### COMPLEX ORGANIC INTERSTELLAR MOLECULES

| HydrocarbonsN-ContainingImage: circ $C_2H_4$ Ethenecirc $CH_3CN$ Acetonitrilecc, he $HC_4H$ Butadiynecirc $CH_3NC$ Methylisocyanidehe $H_2C_4$ Butatrienylidenecirc, cc, lc $CH_2CNH$ Keteneiminehe $C_5H$ Pentadiynylcirc, cc $HC_3NH^+$ Prot. cyanoacetylenecc $CH_3C_2H$ Propynecc, lc $C_5N$ Cyanopropynylidenecirc, cc $C_6H$ Hexatriynylcirc, cc, lc $HC_4N$ Cyanopropynylidenecirc $C_6H^-$ Hexatriynyl ioncirc, cc, lc $CH_3NH_2$ Methylaminehc, gc $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, he $HC_6H$ Triacetylenecirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $C_7H$ Heptatriynylcirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $CH_3CHCH_2$ Propylenecc $CH_2CHCN$ Cyanoallenecc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                       | hc, of<br>c, cc<br>gc<br>hc<br>c, cc |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| $C_2H_4$ Ethenecirc $CH_3CN$ Acetonitrilecc, he $HC_4H$ Butadiynecirc $CH_3NC$ Methylisocyanidehe $H_2C_4$ Butatrienylidenecirc, cc, lc $CH_2CNH$ Keteneiminehe $C_5H$ Pentadiynylcirc, cc $HC_3NH^+$ Prot. cyanoacetylenecc $CH_3C_2H$ Propynecc, lc $C_5N$ Cyanobutadiynylcirc, cc $C_6H$ Hexatriynylcirc, cc, lc $HC_4N$ Cyanopropynylidenecirc $C_6H^-$ Hexatriynyl ioncirc, cc, lc $CH_3NH_2$ Methylaminehc, gc $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, he $HC_6H$ Triacetylenecirc, cc $CH_3C_3N$ Methylaynoacetylenecc $C_7H$ Heptatriynylcirc, cc $CH_3CN$ Methylcyanoacetylenecc $CH_3C4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanoallenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc | hc, of<br>c, cc<br>gc<br>hc<br>c, cc |
| HC4HButadiynecircCH3NCMethylisocyanidehc $H_2C_4$ Butatrienylidenecirc, cc, lc $CH_2CNH$ Keteneiminehc $C_5H$ Pentadiynylcirc, cc $HC_3NH^+$ Prot. cyanoacetylenecc $CH_3C_2H$ Propynecc, lc $C_5N$ Cyanobutadiynylcirc, cc $C_6H$ Hexatriynylcirc, cc, lc $HC_4N$ Cyanopropynylidenecirc $C_6H^-$ Hexatriynyl ioncirc, cc, lc $CH_3NH_2$ Methylaminehc, gc $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, hc $HC_6H$ Triacetylenecirc, cc $CH_3C_3N$ Methylcyanoacetylenecirc, cc $C_7H$ Heptatriynylcirc, cc $CH_2CCHCN$ Cyanoallenecc $CH_3C_4H$ Methyldiacetylenecc $CH_2CHCN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                                                                                                             | e, cc<br>e<br>gc<br>hc<br>e, cc      |
| $H_2C_4$ Butatrienylidenecirc, cc, lc $CH_2CNH$ Keteneiminehc $C_5H$ Pentadiynylcirc, cc $HC_3NH^+$ Prot. cyanoacetylenecc $CH_3C_2H$ Propynecc, lc $C_5N$ Cyanobutadiynylcirc, cc $C_6H$ Hexatriynylcirc, cc, lc $HC_4N$ Cyanopropynylidenecirc $C_6H^-$ Hexatriynyl ioncirc, cc, lc $CH_3NH_2$ Methylaminehc, gc $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, hc $HC_6H$ Triacetylenecirc, cc $HC_5N$ Cyanodiacetylenecirc, cc $C_7H$ Heptatriynylcirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $CH_3C_4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanoallenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                                                                                                | c, cc<br>c<br>gc<br>hc<br>c, cc      |
| $C_3H$ Pentadiynylcirc, cc $HC_3NH^+$ Prot. cyanoacetylenecc $CH_3C_2H$ Propynecc, lc $C_5N$ Cyanobutadiynylcirc, cc $C_6H$ Hexatriynylcirc, cc, lc $HC_4N$ Cyanopropynylidenecirc $C_6H^-$ Hexatriynyl ioncirc, cc, lc $CH_3NH_2$ Methylaminehc, gc $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, hc $HC_6H$ Triacetylenecirc, cc, lc $C_2H_3CN$ Vinylcyanoacetylenecirc, cc $C_7H$ Heptatriynylcirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $CH_3C_4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanoallenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                                                                                                                                                    | e, ec<br>ge<br>he<br>s, ec           |
| $CH_3C_2H$ Propynecc, lc $C_5N$ Cyanobutadiynylcirc, or $C_6H$ Hexatriynylcirc, cc, lc $HC_4N$ Cyanopropynylidenecirc $C_6H^-$ Hexatriynyl ioncirc, cc, lc $CH_3NH_2$ Methylaminehc, gc $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, hc $HC_6H$ Triacetylenecirc, cc $HC_5N$ Cyanodiacetylenecirc, cc $C_7H$ Heptatriynylcirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $CH_3C_4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanodilenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                                                                                                                                                                                                                           | e, cc<br>gc<br>hc<br>c, cc           |
| $C_6H$ Hexatriynylcirc, cc, lcHC_4NCyanopropynylidenecirc $C_6H^-$ Hexatriynyl ioncirc, cc, lc $CH_3NH_2$ Methylaminehc, gc $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, hc $HC_6H$ Triacetylenecirc $HC_5N$ Cyanodiacetylenecirc, cc $C_7H$ Heptatriynylcirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $CH_3C_4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanodilenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                                                                                                                                                                                                                                                                                           | ge<br>he<br>e, ce                    |
| $C_6H^-$ Hexatriynyl ioncirc, cc, lc $CH_3NH_2$ Methylaminehc, gr $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, hc $HC_6H$ Triacetylenecirc $HC_5N$ Cyanodiacetylenecirc, cc $C_7H$ Heptatriynylcirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $CH_3C_4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanoallenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                                                                                                                                                                                                                                                                                                                                                     | gc<br>hc<br>c, cc                    |
| $H_2C_6$ Hexapentaenylidenecirc, cc, lc $C_2H_3CN$ Vinylcyanidecc, hc $HC_6H$ Triacetylenecirc $HC_5N$ Cyanodiacetylenecirc, cc $C_7H$ Heptatriynylcirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $CH_3C_4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanoallenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                                                                                                                                                                                                                                                                                                                                                                                                                       | hc<br>c, cc                          |
| $HC_6H$ Triacetylenecirc $HC_5N$ Cyanodiacetylenecirc, c $C_7H$ Heptatriynylcirc, cc $CH_3C_3N$ Methylcyanoacetylenecc $CH_3C_4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanoallenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c, cc                                |
| C7H     Heptatriynyl     circ, cc     CH <sub>3</sub> C <sub>3</sub> N     Methylcyanoacetylene     cc       CH <sub>3</sub> C <sub>4</sub> H     Methyldiacetylene     cc     CH <sub>2</sub> CCHCN     Cyanoallene     cc       CH <sub>3</sub> CHCH <sub>2</sub> Propylene     cc     NH <sub>2</sub> CH <sub>2</sub> CN     Aminoacetonitrile     hc       C <sub>8</sub> H     Octatetraynyl     circ, cc     HC <sub>7</sub> N     Cyanotriacetylene     circ, cc                                                                                                                                                                                                                                                                                                                               |                                      |
| $CH_3C_4H$ Methyldiacetylenecc $CH_2CCHCN$ Cyanoallenecc $CH_3CHCH_2$ Propylenecc $NH_2CH_2CN$ Aminoacetonitrilehc $C_8H$ Octatetraynylcirc, cc $HC_7N$ Cyanotriacetylenecirc, cc $C_2H^-$ Octatetraynylcirc, cc $HC_7N$ Preprioritrilehc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |
| CH <sub>3</sub> CHCH <sub>2</sub> Propylene     cc     NH <sub>2</sub> CH <sub>2</sub> CN     Aminoacetonitrile     hc       C <sub>8</sub> H     Octatetraynyl     circ, cc     HC <sub>7</sub> N     Cyanotriacetylene     circ, cc       C <sub>8</sub> H <sup>-</sup> Octatetraynyl     circ, cc     HC <sub>7</sub> N     Propionitrile     hc                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| C <sub>8</sub> H Octatetraynyl circ, cc HC <sub>7</sub> N Cyanotriacetylene circ, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                 |
| CaH <sup>-</sup> Optotetraumulion ging on CaHaCN Dromionitaile he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .,                                   |
| Cart Octated aynyr Ion Circ, cc C2ri5Civ Propionitrile nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |
| CH3C6H Methyltriacetylene cc CH3C5N Methylcyanodiacetylene cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| C <sub>6</sub> H <sub>6</sub> Benzene circ HC <sub>9</sub> N Cyanotetraacetylene circ, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | с, сс                                |
| O-Containing C <sub>3</sub> H <sub>7</sub> CN N-propyl cyanide hc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| CH <sub>3</sub> OH Methanol cc, hc, gc, of HC <sub>11</sub> N Cyanopentaacetylene circ, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | с, сс                                |
| HC <sub>2</sub> CHO Propynal hc, gc S-Containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
| c-C <sub>3</sub> H <sub>2</sub> O Cyclopropenone gc CH <sub>3</sub> SH Methyl mercaptan hc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| CH3CHO Acetaldehyde cc, hc, gc N,O-Containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| C2H3OH Vinyl alcohol hc NH2CHO Formamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| c-CH2OCH2 Ethylene oxide hc, gc CH3CONH2 Acetamide hc, gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gc                                   |
| HCOOCH <sub>3</sub> Methyl formate hc, gc, of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| CH3COOH Acetic acid hc, gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| HOCH2CHO Glycolaldehyde hc, gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| C2H3CHO Propenal hc, gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| C <sub>2</sub> H <sub>5</sub> OH Ethanol hc, of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
| CH3OCH3 Methyl ether hc, gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |
| CH <sub>3</sub> COCH <sub>3</sub> Acetone hc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| HOCH2CH2OH Ethylene glycol hc, gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| C2H5CHO Propanal hc, gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| HCOOC <sub>2</sub> H <sub>5</sub> Ethyl formate hc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |



#### Why Formamide?



- It's a simple one C-bearing molecule.
- It's formed by hydrolysis of HCN.
- It's active in synthesis of nucleobases.
- •It's observed in:
  - ✓ ISM (Millar 2005);
  - ✓ Hale-Bopp comet (Bockeleé-Morvan et al. 2000);
  - ✓ young stellar object W33A (Lopez-Sepulcre et al. 2015);
  - ✓ dense ISM IRS9 (Raunier et al. 2000)
  - ✓ Sun-like protostellar shock (Codella et al. 2017).

# Thermal processing of *liquid* Formamide with & without dust



Saladino R., Crestini C., Neri C., Brucato J.R., Colangeli L. Ciciriello F., Di Mauro E., Costanzo G., *ChemBioChem* **6**, 1, 2005





#### Titanium dioxide Photochemistry



#### **Biogenic Carboxylic Acids**



R. Saladino, J.R. Brucato, ASTROBIOLOGY 2011



#### Adsorption properties of nucleobases on minerals

 $n_{ads}/m_{mineral} = KbC_{eq} / (1 + KC_{eq})$ 



Nucleobases adsorption order:

adenine > uracil  $\ge$  hypoxanthine > cytosine

#### Adsorption of Uracil, Uridine and UMP on Brucite



Ribose not involved in the adsorption (only weak outer-sphere interactions) Strong interactions via Phosphate group Brucite selectively adsorbs nucleic acid components from dilute aqueous environments, suggesting a role in concentrating biomolecules in prebiotic conditions

Brucite surface induces well-defined orientations of the molecules through specific molecule-mineral interactions, suggesting a role in assisting prebiotic self-organization, increasing molecular complexity and promoting chemical reactions towards more complex species



T. Fornaro, J. R. Brucato, C. Feuillie, D.A. Sverjensky, R. M. Hazen, R. Brunetto, M. D'Amore, V. Barone, *Astrobiology* 2018, in press

# UV IRRADIATION OF "BUILDING BLOCKS OF LIFE" ADSORBED ON MINERALS



## UV degradation kinetics



 $N(t)/N_0 = Be^{-\beta t} + c$ 

N(t)/N<sub>0</sub> fraction of unaltered molecules
β degradation rate
B fraction of interacting molecules
c fraction of non-interacting molecules

 $t_{1/2}$  half-lifetime  $\sigma$  UV destruction cross section  $\phi_{tot}$  total focused incident UV flux  $A_0$  sample irradiated area

Cytosine and hypoxanthine have a greater photostability
For adenine and especially uracil degradation was observed both pure and adsorbed onto MgO and forsterite
Minerals make degradation faster and more probable

Fornaro, T.; Brucato, J. R.; Pace, E.; Guidi, M. C.; Branciamore, S.; Pucci, A. *Icarus* **2013**, 226(1), 1068-1085.

| peak (cm <sup>-1</sup> )       | mode                                                                                        | $\sigma$ (cm <sup>2</sup> )    | $t_{1/2 \text{ lab}}$ (min) | $\sigma_{\rm f}({ m cm}^2)$          |  |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|--------------------------------------|--|--|--|--|
| Adenine                        |                                                                                             |                                |                             |                                      |  |  |  |  |
| 1185                           | $Q_{17}\!\!:\delta_{rock}NH_2,\nu C_5N_7,\nu C_2N_3$                                        | $(9\pm1)\cdot10^{-20}$         | $180\pm20$                  |                                      |  |  |  |  |
| 1017                           | $Q_{20}\!\!:\delta_{rock}NH_2,\nu N_1C_6$                                                   | $(1.4 \pm 0.1) \cdot 10^{-19}$ | $110\pm10$                  |                                      |  |  |  |  |
|                                | Adenine adsorbed on MgO                                                                     |                                |                             |                                      |  |  |  |  |
| 1247                           | $Q_{16}\!\!:\delta C_8H,\nu N_7C_8,\delta N_9H$                                             | $(1.1 \pm 0.1) \cdot 10^{-18}$ | $36\pm4$                    |                                      |  |  |  |  |
| Adenine adsorbed on forsterite |                                                                                             |                                |                             |                                      |  |  |  |  |
| 1675                           | $Q_7: \nu N_3 C_4, \nu C_5 C_6$                                                             | $(5\pm1)\cdot10^{-20}$         | $310\pm70$                  |                                      |  |  |  |  |
| 1608                           | $Q_8 \hspace{-0.5mm}: \hspace{-0.5mm} \delta_{sciss} NH_2, \nu C_4 C_5, \nu C_5 C_6$        | $(6.9\pm0.7){\cdot}10^{-20}$   | $230\pm20$                  |                                      |  |  |  |  |
| 1420                           | $Q_{11}$ : vC <sub>4</sub> C <sub>5</sub> , vC <sub>4</sub> N <sub>9</sub> , $\delta C_2 H$ | $(1.2 \pm 0.1) \cdot 10^{-19}$ | $130\pm10$                  |                                      |  |  |  |  |
| 1334                           | $Q_{13}$ : $\delta C_2 H$ , $\nu C_8 N_9$ , $\delta C_8 H$ , $\nu C_6 N_6$                  | $(9\pm2)\cdot10^{-20}$         | $180\pm30$                  |                                      |  |  |  |  |
| 1309                           | $Q_{15}$ : $\nu C_2 N_3$ , $\nu N_1 C_2$                                                    | $(4 \pm 2) \cdot 10^{-20}$     | $400\pm200$                 |                                      |  |  |  |  |
| 1025                           | $Q_{20}\!\!:\delta_{rock}NH_2,\nu N_1C_6$                                                   | $(4.6\pm0.5){\cdot}10^{-19}$   | $35\pm4$                    |                                      |  |  |  |  |
|                                |                                                                                             | Uracil                         |                             |                                      |  |  |  |  |
| 1242                           | Q <sub>12</sub> : v ring                                                                    | $(1.28\pm0.09){\cdot}10^{-19}$ | $124\pm8$                   |                                      |  |  |  |  |
| 1456                           | Q9: v ring, δN3H                                                                            | $(9.4\pm0.9){\cdot}10^{-20}$   | $170\pm20$                  |                                      |  |  |  |  |
| 1421                           | $Q_{10}$ : $\delta N_3 H + \delta C H$                                                      | $(2.43\pm0.07){\cdot}10^{-19}$ | $65\pm2$                    |                                      |  |  |  |  |
| 1381                           |                                                                                             |                                |                             | $(10 \pm 2) \cdot 10^{-20}$          |  |  |  |  |
| 1290                           |                                                                                             |                                |                             | $(2.59\pm0.05){\cdot}10^{{\cdot}19}$ |  |  |  |  |
| 1165                           |                                                                                             |                                |                             | $(2\pm 2)\cdot 10^{-21}$             |  |  |  |  |
| 585                            | Q <sub>23</sub> : γNH                                                                       | $(2.3\pm0.1){\cdot}10^{-19}$   | $69\pm4$                    |                                      |  |  |  |  |
| Uracil adsorbed on MgO         |                                                                                             |                                |                             |                                      |  |  |  |  |
| 1286                           | Q <sub>12</sub> : v ring                                                                    | $(1.77\pm0.06){\cdot}10^{-18}$ | $22.4\pm0.7$                |                                      |  |  |  |  |
| Uracil adsorbed on forsterite  |                                                                                             |                                |                             |                                      |  |  |  |  |
| 1455                           | Q <sub>9</sub> : ν ring, δN <sub>3</sub> H                                                  | $(5.0 \pm 0.1) \cdot 10^{-19}$ | $31.7\pm0.7$                |                                      |  |  |  |  |
| 1418                           | $Q_{10}$ : $\delta N_3 H + \delta C H$                                                      | $(5.4 \pm 0.1) \cdot 10^{-19}$ | $29.3\pm0.7$                |                                      |  |  |  |  |
| 1287                           |                                                                                             |                                |                             | $(1.60\pm0.07){\cdot}10^{-18}$       |  |  |  |  |
| 1240                           | Q <sub>12</sub> : v ring                                                                    | $(3.96\pm0.07){\cdot}10^{-19}$ | $40.1\pm0.7$                |                                      |  |  |  |  |

### Photoproducts bonds



Fornaro, T.; Brucato, J. R.; Pace, E.; Guidi, M. C.; Branciamore, S.; Pucci, A. *Icarus* **2013**, 226(1), 1068-1085.

## Photoproducts

#### [2+2] Photocycloaddition





#### Main photoproduct:

Ο

ΝH

Cyclobutane dimer (CBD)

# UV irradiation of Naphthol adsorbed on forsterite

#### UV irradiation at 80 K



S. Potenti, P. Manini, T. Fornaro, G. Poggiali, O. Crescenzi, A. Napolitano, J. R. Brucato, V. Barone, M. d'Ischia , PCCP 2018, submitted

#### UV irradiation of Naphthol adsorbed on forsterite



S. Potenti, P. Manini, T. Fornaro, G. Poggiali, O. Crescenzi, A. Napolitano, J. R. Brucato, V. Barone, M. d'Ischia , PCCP 2018, submitted

# UV irradiation of aminoacids (Arg and Leu)

Leu 1560 cm<sup>-1</sup> UV

2220 min

1250 min

570 min

150 min

0 min

1550

0,195

0,15527 0,02314 2766,41961 604,97545

0.0238

1540







|                                    | Life-time (min) | <b>Cross-section (m<sup>2</sup>)</b> $\times$ 10 <sup>-26</sup> |
|------------------------------------|-----------------|-----------------------------------------------------------------|
| Glutamic acid 1680 cm <sup>1</sup> | $1.0 \pm 0.5$   | 2 ± 1                                                           |
| Glutamic acid 670 cm <sup>1</sup>  | $0.6 \pm 0.1$   | $3.6 \pm 0.7$                                                   |
| Glutamic acid 1267 cm <sup>1</sup> | $2.7 \pm 3.5$   | $0.8 \pm 1.1$                                                   |
| Leucine 1560 cm <sup>1</sup>       | $2.8 \pm 0.6$   | $0.8 \pm 0.2$                                                   |
| Leucine 670 cm <sup>1</sup>        | $2.8 \pm 0.8$   | $0.8 \pm 0.3$                                                   |
| Leucine 1530 cm <sup>1</sup>       | $2.2 \pm 0.9$   | $1.0 \pm 0.5$                                                   |
| Arginine 1070 cm <sup>1</sup>      | $0.26 \pm 0.05$ | 9 ± 2                                                           |

# UV irradiation of Gly

| Cross section and half-lifetimes at simulated space conditions |                                                            |                                                                                                   |                                            |  |  |  |
|----------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Peak ( $cm^{-1}$ )                                             | Mode                                                       | $\sigma~(cm^2)$                                                                                   | $t_{1/2}(sec)$                             |  |  |  |
| Gly adsorbed on spinel                                         |                                                            |                                                                                                   |                                            |  |  |  |
| 2606<br>2905<br>3186                                           | $ \nu NH_3 + \nu CN $ $ unidentified $ $ \nu_{\sim} NH_2 $ | $(3.6 \pm 0.4) \times 10^{-18}$<br>$(2.4 \pm 0.8) \times 10^{-18}$<br>$(2 \pm 1) \times 10^{-18}$ | $7.7 \pm 0.8$<br>$11 \pm 4$<br>$17 \pm 12$ |  |  |  |
| Gly adsorbed on y<br>2606                                      | $\nu_{as}^{as} + \mu_{3}^{c}$                              | $(7 \pm 2) \times 10^{-18}$<br>(0.2 + 1.4) × 10^{-18}                                             | $3.8 \pm 0.8$                              |  |  |  |
| 3189                                                           | $\nu_{as} N H_3$                                           | $(9.3 \pm 1.4) \times 10^{-10}$                                                                   | $3.0 \pm 0.4$                              |  |  |  |

Parameters and cross section for bands formation process

| Peak ( $cm^{-1}$ ) | $\alpha$          | $\chi^2_{dof}$ | $\sigma_f~(cm^2)$               | Mode      |
|--------------------|-------------------|----------------|---------------------------------|-----------|
| Gly adsorbed on p  | oyrite in laborat | ory condi      | itions                          |           |
| 2340               | $1.7\pm0.3$       | 0.923          | $(6.8 \pm 1.3) \times 10^{-17}$ | $CO_2$    |
| Gly adsorbed on p  | oyrite in simula  | ted space      | conditions                      |           |
| 2045               | $0.09\pm0.04$     | 0.453          | $(4\pm1)\times10^{-18}$         | $C_x O_y$ |
| 2343               | $0.3 \pm 0.3$     | 0.784          | $(1.2 \pm 1.2) \times 10^{-17}$ | $CO_2$    |

 $H_3NCH_2COO + h\nu \rightarrow H_3NCH_2 + COO$ 

Cross section and half-lifetimes at laboratory conditions

| Peak ( $cm^{-1}$ ) | Mode                   | $\sigma$ (cm <sup>2</sup> )     | $t_{1/2}(h)$    |
|--------------------|------------------------|---------------------------------|-----------------|
| Gly adsorbed on    | antigorite             |                                 |                 |
| 1333               | $\omega CH_2$          | $(5 \pm 2) \times 10^{-21}$     | $1.4 \pm 0.5$   |
| 1412               | $\nu_s COO^-$          | $(7 \pm 2) \times 10^{-21}$     | $1.2 \pm 0.4$   |
| 1503               | $\delta NH_3$          | $(1\pm 2) \times 10^{-21}$      | $7 \pm 13$      |
| 1584 - 1660        | $\nu_{as}COO^-$        | $(2.2 \pm 1.2) \times 10^{-21}$ | $3.5\pm0.2$     |
| 2116               | $\nu NH_3 + \tau NH_3$ | $(3 \pm 2) \times 10^{-21}$     | $2.3\pm1.5$     |
| Gly adsorbed on j  | forsterite             |                                 |                 |
| 1335               | $\omega CH_2$          | $(1.3 \pm 0.3) \times 10^{-20}$ | $0.6 \pm 0.1$   |
| 1413               | $\nu_s COO^-$          | $(1.3 \pm 0.3) \times 10^{-20}$ | $0.6 \pm 0.1$   |
| 1523               | $\delta NH_3$          | $(2 \pm 1) \times 10^{-20}$     | $0.29\pm0.12$   |
| 1664               | $\nu_{as}COO^-$        | $(2 \pm 2) \times 10^{-20}$     | $0.3 \pm 0.3$   |
| 2134               | $\nu NH_3 + \tau NH_3$ | $(1.9 \pm 0.8) \times 10^{-20}$ | $0.4 \pm 0.1$   |
| 2615               | $\nu NH_3 + \nu CN$    | $(2.4 \pm 0.8) \times 10^{-20}$ | $0.4 \pm 0.1$   |
| Gly adsorbed on a  | spinel                 |                                 |                 |
| 1333               | $\omega CH_2$          | $(3\pm 1) \times 10^{-21}$      | $2.3\pm0.07$    |
| 1412               | $\nu_s COO^-$          | $(1.1 \pm 1.1) \times 10^{-21}$ | $7\pm 6$        |
| 1505               | $\delta NH_3$          | $(3.3 \pm 1.1) \times 10^{-21}$ | $2.3 \pm 0.7$   |
| 1584-1660          | $\nu_{as}COO^-$        | $(3 \pm 2) \times 10^{-21}$     | $2\pm 1$        |
| 2117               | $\nu NH_3 + \tau NH_3$ | $(2 \pm 1) \times 10^{21}$      | $3\pm 1$        |
| Gly adsorbed on g  | pyrite                 |                                 |                 |
| 916                | $\rho CH_2$            | $(5 \pm 2) \times 10^{-21}$     | $1.4 \pm 0.5$   |
| 1309               | $twCH_2$               | $(2.4 \pm 0.4) \times 10^{-20}$ | $0.33 \pm 0.05$ |
| 1337               | $\omega CH_2$          | $(2.2 \pm 0.6) \times 10^{-20}$ | $0.35\pm0.08$   |
| 1420               | $\nu_s COO^-$          | $(3\pm 1) \times 10^{-20}$      | $0.23 \pm 0.07$ |
| 1521               | $\delta NH_3$          | $(1.6 \pm 0.5) \times 10^{-20}$ | $0.46 \pm 0.09$ |
| Gly adsorbed on (  | $TiO_2$                | (                               |                 |
| 1334               | $\omega CH_2$          | $(3 \pm 4) \times 10^{-21}$     | $2.3 \pm 0.7$   |
| 1413               | $\nu_s COO^-$          | $(9 \pm 1) \times 10^{-21}$     | $0.9 \pm 0.1$   |
| 1506               | $\delta N H_3$         | $(1.0 \pm 0.2) \times 10^{-20}$ | $0.8 \pm 0.2$   |
| 1584-1660          | $\nu_{as}COO^-$        | $(1.0 \pm 0.1) \times 10^{-20}$ | $0.77 \pm 0.07$ |
| 3169               | $\nu_{as} NH_3$        | $(1.0 \pm 0.2) \times 10^{-20}$ | $0.8 \pm 0.2$   |

# Summary

#### Photodegradation:

- We derived that the cross-section of photodegradation of adenine is very similar to that obtained in space experiment BIOPAN 6.
- Adenine and uracil are fragile at VUV irradiation ( $t_{1/2}$  few hours).
- Changes in the photophysical behavior of nucleobases are highly dependent on the specific interactions with the mineral surface.
- Amino acids are photo-degradated faster in space simulated conditions.
- Minerals have no protective effect against the UV radiation, instead they may be catalytic speeding up the degradation kinetics.

#### Thermodynamics of adsorption:

- A physisorption process occurs predominantly;
- Hydroxyl plays a fundamental role in physisorption process.

#### IR spectroscopy analysis:

- Important shifts of the vibrational frequencies and changes of the IR intensities occur when biomolecules are adsorbed on minerals.
- Band assignments based on gas-phase data could be misleading.

# Acknowledgements

# Fellow Teresa Fornaro

Geophysical Laboratory - Carnegie Institution for Science, Washington DC, USA

# PhD student Giovanni Poggiali

INAF-Astrophysical Observatory of Arcetri University of Firenze, Dep. Physics & Astronomy

> PhD student Simone Potenti Scuola Normale Superiore, Pisa







