The importance of cosmic rays in star and planet formation

Paola Caselli Centre for Astrochemical Studies Max-Planck-Institute für extraterrestrische Physik

OUTLINE

The start of astrochemistry
D-fractionation and x(e)

o Dust charging

@ Processing of icy mantles

The formation of protoplanetary disks

The start of astrochemistry

After the formation of molecular hydrogen, cosmic rays ionize H₂ initiating fast routes towards the formation of complex molecules in dark clouds:

$H_2 + c.r. \rightarrow H_2^+ + e^- + c.r.$

Once H_2^+ is formed (97% of the times a c.r. hits H_2), it very quickly reacts with the abundant H_2 molecules to form H_3^+ , the most important molecular ion in interstellar chemistry.

 $H_2^+ + H_2 \rightarrow H_3^+ + H_1$

The start of astrochemistry

D-fractionation and x(e)

$$H_3^+ + HD \Longrightarrow H_2^- D^+ + H_2^- + 230 \text{ K}$$

Watson 1974

$$N_2 \rightarrow N_2 D^+ + H_2$$
$$H_2 D^+ +$$
$$CO \rightarrow DCO^+ + H_2$$

 H_2D^+/H_3^+ (and D/H) increases if the abundance of gas phase neutral species decreases (*Dalgarno & Lepp 1984*).

Roberts, Millar & Herbst 2003 (explaining CO and H₂D⁺ observations of Caselli et al. 1999, 2003)

D-fractionation and x(e)

D-fractionation and x(e)

Cosmic-ray effects on dust charging

The importance of x(e)

Credit: ESA/Herschel/SPIRE

x(e) regulates the dynamical evolution of molecular clouds and star formation (e.g. McKee 1989)

The importance of x(e)

The transition to coherence in dense cores ...

The velocity dispersion changes abruptly between the dense core and the surrounding cloud, increasing by a factor of 2 in less than 0.03 pc.

...may be explained by non-ideal MHD

First detection of water vapour in a pre-stellar core

The importance of FUV photons produced by c.r.

★x(H₂O) ~ 10⁻⁹ maintained by FUV photons produced by c.r. (total mass of water vapor: ~0.5
Earth masses; total mass of water ice: ~2.6 Jupiter masses).

 \bullet n_H ≥ 10⁶ cm⁻³, to explain H₂O emission.

Gravitational contraction to see blue wing in emission.

Effects of 5 on the thermal structure of pre-stellar cores

Magnetic mirroring and focusing of cosmic rays

Silsbeet, in prep.

Impulsive heating and thermal explosion of interstellar grains

Starting from the heat equation, describing the temperature T(r,t) in a reactive medium (Landau & Lifshitz 1987):

$$\rho c \frac{\partial T}{\partial t} = Q_r e^{-E_a/k_B T} + \kappa \left(\frac{\partial^2 T}{\partial r^2} + \frac{D-1}{r}\frac{\partial T}{\partial r}\right)$$
$$T(r,0) = \frac{q_D}{\rho c} \delta_D(r)$$

In dimensionless form:

$$\frac{\partial \theta}{\partial \tau} = \lambda e^{-1/\theta} + \frac{\partial^2 \theta}{\partial \xi^2} + \frac{D - 1}{\xi} \frac{\partial \theta}{\partial \xi}$$
$$\theta = k_B T / E_a; \xi = r / r_*; \tau = t / t_*$$

the problem is characterised by a single number:

$$\lambda = \frac{Q_r}{\kappa E_a} \left(\frac{q_D}{\rho c E_a}\right)^{2/D}$$

Ivlev et al. 2015b

Schematic representation of the thermal (chemical) explosion of an icy mantle due to cosmic-ray impact:

If $\lambda < \lambda_{cr}$, the deposited energy is redistributed over the grain's volume (the whole-grain-heating scenario);

If $\lambda > \lambda_{cr}$, the thermal explosion is triggered and runaway exothermic reactions generate a cylindrical flame front in the mantle, leading to its disruption.

SUMMARY on impulsive heating and thermal explosion

Considering the proton spectrum in dense clouds of Padovani et al. (2009), $\phi_{Fe} \sim 10^{-4}$ and fraction of radicals in bulk ice from chemical model:

- 1. Fe nuclei can lead to explosion, with desorption rates (3x10⁻⁷ mol grain⁻¹ s⁻¹), comparable to whole-grain and spot heating.
- 2. $\phi_A \phi_B < 10^{-3}$ (A,B pair of radicals that dominates the heat release) to avoid unrealistically large desorption rates.
- 3. Cosmic ray protons can heat up the dust grain, thus activating new surface chemistry (work in progress).

Ivlev et al. 2015b

Protostellar disk formation enabled by removal of very small dust grains

VSG removal enhances ambipolar diffusion, reducing magnetic breaking.

Different ζ values result in different disk structures. Values of ζ much larger than 10^{-17} s⁻¹ can suppress disk formation.

Zhao+2016, 2018

CONCLUSIONS

Cosmic rays are crucial ingredients for star and planet formation because they:

- start astrochemistry;
- determine x(e) and the dynamical evolution of molecular clouds;
- o provide efficient non-thermal desorption mechanisms in cold clouds (and avoid complete freeze-out?);
- o process icy mantles and modify the ice composition;
- influence the formation and evolution of protoplanetary disks.

It is very important to understand cosmic-ray propagation in molecular clouds and disks!

Special Thanks To Alexei Ivlev (MPE)

Daniele Galli & Marco Padovani (Arcetri)