The Role of Cosmic Rays in Setting the Chemical Content of Protoplanetary Disk Midplanes

Maria N. Drozdovskaya

CSH and IAU Gruber Foundation Fellow Center for Space and Habitability, Universität Bern, CH

Cosmic Rays – the salt of the star formation recipe Arcetri, Florence, Italy May 3rd, 2018

Planet (S)

UNIVERSITÄT BERN

CSH CENTER FOR SPACE AND HABITABILITY

What is the chemical compostion of protoplanetary building blocks?

Are cosmic rays important in this context?

Herbst E, van Dishoeck EF. 2009. Annu. Rev. Astron. Astrophys. 47:427–80

Chemistry during collapse

Chemistry occurs in parallel with the large-scale physical evolution of the system AND with grain growth.

90% of the total disk mass lies below z = 1 AU

=> protoplanetary disk midplanes are cometary and planetary factories

Interstellar chemical processes

- Refractories = dust
- Volatiles = gas & ice

Grain-surface chemical processes:

 ${f R}$ Annu. Rev. Astron. Astrophys. 47:427–80

Cosmic rays as drivers of chemistry

Photodissociation by the CR-induced UV photons and direct CR ionization the gas

- production of radicals and ions in the gas

Spot heating:

- thermal desorption below T_{des} particularly of weakly bound species (e.g., CO)

Photodissociation and photodesorption by the CR-induced UV photons in the ice

- particularly important for desorption below T_{des} of tightly bound species (e.g., CH₃OH), link with reactive desorption

- production of radicals for COM synthesis

(e.g., Shen+ 2014, Roberts+ 2007)

Typical:

 $\zeta = 5 \times 10^{-17} \text{ s}^{-1}$

=> 10^4 CR-induced UV photons cm⁻² s⁻¹

(Prasad & Tarafdar 1983)

Account for attenuation:

$$\zeta = \zeta_0 \exp(\frac{-\Sigma_{(R,z)}}{96 \, g \, cm^{-2}})$$

Lower limit: 7.3×10^{-19} s⁻¹ from ²⁶Al radionuclide decay

(Umebayashi & Nakano 1981; Cleeves+ 2013)

& large gas-grain chemical network

McElroy et al. 2013; Garrod & Herbst 2006; Walsh et al. 2014a,b

1. chemical simulation of the dark, quiescent precollapse phase for 3×10^5 yr

initial chemical conditions across the system

2. chemical modeling per point/trajectory in 2D

Static protoplanetary disk models

After 1 Myr:

- If CRs are neglected, then volatile abundances are unaltered
- •CRs enhance CO_2 abundance at the expense of CO and H_2O
- CRs also destroy CH₄ gas in the inner disk (< 20 AU), but enhances CH₄ gas in the outer disk

At longer times the effects are stronger ($\sim 10^4 - 10^5$ yr).

Midplane chemistry is ionizationdriven!

(SLR: short-lived radionuclides)

Eistrup+ 2016, 2017

On large scales in the envelope

Dynamical physicochemical model

2D, semi-analytic computation

Visser et al. 2009, 2011

1. pre-stellar core to protostar & protoplanetary disk $(2.46 \times 10^5 \text{ yr})$

 \Rightarrow density(R, z, t) & velocity(R, z, t)

2. λ -dependent radiative transfer with RADMC3D

 $T_{dust}(R, z, t) \& F_{UV}(R, z, t)$

- compute trajectories & the physical conditions along them
- 4. run the chemistry

Two cases

CRs will also be crucial in setting the abundances and gas/ice-partition of the initial prestellar abundances.

Several hundred trajectories per case!

Disc Case		spread-dominated ^{b}	infall-dominated ^c
$\overline{\Omega_0}$	(s^{-1})	10^{-14}	10 ⁻¹³
c_{s}	$({\rm km} {\rm s}^{-1})$	0.26	0.26
$M_{ m O}$	(M _☉)	1.0	1.0
t_{acc}	(yr)	2.46×10^{5}	2.46×10^{5}
$M_{ m d}$	(M _☉)	0.11	0.44
$R_{ m out}$	(AU)	51	294

^{*a*} Ω_0 : solid-body rotation rate; c_s : effective sound speed; M_0 : initial core mass; t_{acc} : accretion time; M_d : disc mass at t_{acc} ; R_{out} : outer disc radius at t_{acc} .

Stronger CR-attenuation in the infall-dominated disk.

=> less efficient midplane chemistry

Drozdovskaya+ 2016

Global Physical Conditions

Parcels encounter different physical conditions en route.

Critical steps of *T*_{dust}:

20 K: loss of CO ice 100 K: loss of H₂O & CH₃OH ices 40 – 80 K: optimal mobility of radicals

 F_{UV} is also important!

Density

At 3×10^5 yr:

Infall-dom. disk; Drozdovskaya+ 2016

Simple Volatiles in Midplanes

- Inner disk: gas-rich
- Outer disk: ice-rich
- Midplane snowlines recovered

Infall-dom. disk; Drozdovskaya+ 2016

Infall-dom. disk; Drozdovskaya+ 2016 The two cases again

Higher ionization =>

- less CH₃OH & COMs
- more NH₃

(opposite to Eistrup+ 2016)

Complex Volatiles in Midplanes

 complex organic ices are on the order of methanol ice

~1% of water ice

• Comparable to 67P!

(Le Roy+ 2015; Goesmann+ 2015)

- total COMs ~10% of mantle
- transport enhances the abundance of complex organic molecules in protoplanetary disks
- CRs will set the consequent chemical evolution in the midplane

Take-home messages

- Prestellar core volatiles are not simply inherited by the disk.
 - H₂O & CH₃OH down; CO₂ & complex organics up
- Dynamic infall and the chemistry en route are <u>non-negligible</u> for the composition of the protoplanetary disk and the planetesimals therein.
- Cosmic rays dictate protoplanetary disk midplane chemistry and its initial composition.