Cosmic ray penetration in (diffuse?) clouds

www.cnrs.fr

Stefano Gabici APC, Paris

gabici@apc.in2p3.fr

The (horribly simplified) setup of the problem

The (horribly simplified) setup of the problem

CR motion in an ordered B field

Intro <mark>ballistic?</mark> diffusive! theory... ...versus data So?

CR motion in an ordered B field

Most optimistic scenario

Most optimistic scenario

Intro

ballistic?

diffusive!

theory...

...versus data

So?

Intro

ballistic?

diffusive!

theory...

...versus data

So?

 $\begin{array}{c} \quad \mathbf{F} \\ \mathbf{F} \\$ CR 、 $E_{th} > 280 \text{ MeV}$

Intro

ballistic?

diffusive!

theory...

...versus data

So?

Revised estimates...

Intro <mark>ballistic?</mark> diffusive! theory... ...versus data So?

Revised estimates...

The transport equation for cosmic rays

$$\frac{\partial f}{\partial t} = \dots?$$

	Intro	ballistic?	diffusive!	theory	versus data	So?
--	-------	------------	------------	--------	-------------	-----

Wentzel 1972, Kulsrud's book, ...

Intro	ballistic?	diffusive!	theory	versus data	So?

Wentzel 1972, Kulsrud's book, ...

Intro	ballistic?	diffusive!	theory	versus data	So?

Wentzel 1972, Kulsrud's book, ...

Intro	ballistic?	diffusive!	theory	versus data	So?
			•		

-> wave at rest -> Lorentz force -> energy of the particle is conserved -> change of the pitch angle

Wentzel 1972, Kulsrud's book, ...

Intro ballistic?	diffusive!	theory	versus data	So?
------------------	------------	--------	-------------	-----

Resonant pitch angle scattering

Lorentz force

 $F_L = \frac{q}{c} \ \vec{v} \times \vec{B}$

Intro	ballistic?	diffusive!	theory	versus data	So?

Resonant pitch angle scattering

Wentzel 1972, Kulsrud's book, ...

Intro	ballistic?	diffusive!	theory	versus data	So?

Pitch angle diffusion

n identical and densely packed waves, with random phases

 $\langle (\delta \vartheta)^2 \rangle$ single

scattering

Wentzel 1972, Kulsrud's book, ...

	Intro	ballistic?	diffusive!	theory	versus data	So?
--	-------	------------	------------	--------	-------------	-----

Wentzel 1972, Kulsrud's book, ...

Intro	ballistic?	diffusive!	theory	versus data	So?

diffusion coefficient (pitch angle) $D_{\vartheta} \sim \frac{\langle (\Delta \vartheta)^2 \rangle}{t} \sim \Omega_g \langle \left(\frac{\delta B}{B}\right)^2 \rangle$

ballistic? diffusive! ...versus data So? Intro theory...

after this time the cosmic ray "forgets" its initial pitch angle

after this time the cosmic ray "forgets" its initial pitch angle

particle velocity $\lambda_{mfp} \sim au_{iso} v$

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} \right] + \dots ?$$

spatial diffusion coefficient

$$D \sim \lambda_{mfp} v \sim R_L v / \left\langle \left(\frac{\delta B_k}{B}\right)^2 \right\rangle$$

Intro ballistic? <mark>diffusive!</mark> theory... ...versus data

So?

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} \right] + \dots ?$$

spatial diffusion coefficient

resonant scale

$$D \sim \lambda_{mfp} v \sim R_L v / \left\langle \left(\frac{\delta B_k}{B}\right)^2 \right\rangle$$

the power spectrum of turbulence determines the diffusion coefficient

Intro	ballistic?	diffusive!	theory	versus data	So?
-------	------------	------------	--------	-------------	-----

The effect of energy losses

molecular cloud

interstellar medium

The effect of energy losses

interstellar medium

ionized -> diffusion

molecular cloud

neutral -> straight line propagation

"we" call this ion-neutral damping "you" call this ambipolar diffusion

Intro ballistic? <mark>diffusive</mark> !	theory	versus data	So?
---	--------	-------------	-----

Intro ballistic? diffusive	! theory	versus data So?
----------------------------	----------	-----------------

Intro	ballistic?	diffusive!	theory	versus data	So?
			1		

Intro	ballistic?	diffusive!	theory	versus data	So?

Interior Dumance unitative: meet yver aus uutu oue	Intro	ballistic?	diffusive!	theory	versus data	So?
--	-------	------------	------------	--------	-------------	-----

Streaming instability

Kulsrud's book

Streaming instability

Streaming instability

Intro ballistic? diffusive! theoryversus data

outside of the cloud

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} \right] - v_A \frac{\partial f}{\partial z} - \frac{1}{p^2} \frac{\partial}{\partial p} \left[\dot{p} p^2 f \right]$$
CR are advected with waves
energy losses

Intro ballistic? <mark>diffusive!</mark> theory... ...versus data So?

outside of the cloud

outside of the cloud

ins

$$\begin{split} \mathbf{\hat{\rho}} &= \frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} \right] - v_A \frac{\partial f}{\partial z} - \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 f \right] = 0 \\ & \\ \mathbf{CR} \text{ are advected} \\ \text{with waves} \\ \textbf{energy losses} \\ & \\ \textbf{inside of the cloud} \\ & \langle \mu \rangle v \frac{\partial f}{\partial z} + \frac{1}{p^2} \frac{\partial}{\partial p} \left[\dot{p} p^2 f \right] = 0 \\ & \\ & \\ \textbf{particle velocity} \\ \hline \textbf{Intro ballistic? diffusive! theory... ...versus data So?} \end{split}$$

rate of particle penetration into a cloud

Morlino&Gabici 2015

diffusive advective CR flux into the cloud -> $D \frac{\partial f}{\partial x}|_{x_c} + V_A f(x_c)$

Intro	ballistic?	diffusive!	theory	versus data	So?

rate of particle penetration into a cloud

Morlino&Gabici 2015

diffusive advective CR flux into the cloud -> $D \frac{\partial f}{\partial x}|_{x_c} + V_A f(x_c)$

$$\approx D \; \frac{f_0 - f_c}{L_g} + V_A f_c$$

Intro	ballistic?	diffusive!	theory	versus data	So?

diffusive advective

rate of particle penetration into a cloud

Morlino&Gabici 2015

CR flux into the cloud -> $D \frac{\partial f}{\partial x}|_{x_c} + V_A f(x_c)$

$$\approx D \; \frac{f_0 - f_c}{L_g} + V_A f_c \; \approx V_A f_0$$

diffusive advective

rate of particle penetration into a cloud

Morlino&Gabici 2015

CR flux into the cloud -> $D \frac{\partial f}{\partial x}|_{x_c} + V_A f(x_c)$

$$\approx D \; \frac{f_0 - f_c}{L_g} + V_A f_c \; \approx V_A f_0$$

does NOT depend on the diffusion coefficient!!!

rate of particle penetration into a cloud

Morlino&Gabici 2015

condition: L_g < field coherence length

|--|

CRs into clouds: universal spectrum

flux into the cloud $2f_0V_A$ equal to the flux down in p $\frac{L_c}{p^2}\frac{\partial}{\partial p}\left[\dot{p} \ p^2f_c\right]$

Phan+	2018,	Morlir	10&Ga	bici	2015
-------	-------	--------	-------	------	------

Intro	ballistic?	diffusive!	theory	versus data	So?

Differential ionisation rates

Phan+ 2018

- 1 1 1					
-					
				\mathbf{C}	
LNTRO	aittusive! 1	Theory		50?	
				•••	

Differential ionisation rates

Comparison with data (???)

Comparison with data (???)

O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance argument seems quite solid...

E (eV)

- O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance argument seems quite solid...
- Non-homogeneous distribution of MeV CRs in the Galaxy? (see Cesarsky 1975 for a 10⁻¹⁸ pioneering work)

ballistic?

Intro

- O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance argument seems quite solid...
- Non-homogeneous distribution of MeV CRs in the Galaxy? (see Cesarsky 1975 for a pioneering work)
 CR acceleration inside molecular clouds?

(turbulence -> Dogiel+,

protostars —> Padovani+)

O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) -> the flux balance 10¹² Protons in the LISM argument seems quite solid... Maxwellian: $n = 0.1 \text{ cm}^{-3}$; $v = 26 \text{ km s}^{-1}$; T = 8500K10¹¹ Non-homogeneous distribution 10¹⁰ o V1 CRS 12/342-15/181 of MeV CRs in the Galaxy? 10⁹ Leaky-box model LIS 10⁸ (see Cesarsky 1975 for a 107 pioneering work) 10⁶ sr MeV)⁻¹ 10⁵ **O** CR acceleration inside 2016 $J=4.40e-03 E^{-1.5} e^{(-E/0.2)}$ 10⁴ molecular clouds? sec 10³ Intensity (cm² (turbulence -> Dogiel+,10² Cummings+ 10¹ protostars -> Padovani+) 10⁰ Hidden (very low energy) 10⁻¹ 10⁻² component in the CR spectrum? 10^{-3} 10-4 10^{-5} 10-6 $10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}10^{6}$ Energy (MeV) ballistic? diffusive! Intro ...versus data theory... So?

O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance 10¹² Protons in the LISM argument seems quite solid... Maxwellian: $n = 0.1 \text{ cm}^{-3}$; $v = 26 \text{ km s}^{-1}$; T = 8500 K10¹¹ Non-homogeneous distribution 10¹⁰ o V1 CRS 12/342-15/181 of MeV CRs in the Galaxy? 10⁹ Leaky-box model LIS 10⁸ (see Cesarsky 1975 for a 10⁷ pioneering work) 10⁶ sr MeV)⁻¹ 10⁵ **O** CR acceleration inside 2016 $J=4.40e-03 E^{-1.5} e^{(-E/0.2)}$ 10⁴ molecular clouds? sec 10³ Intensity (cm² (turbulence -> Dogiel+,10² Cummings+ 10¹ protostars -> Padovani+) 10⁰ Hidden (very low energy) 10⁻¹ 10-2 component in the CR spectrum? 10^{-3} 10^{-4} 10^{-5} Dense clouds (with clumps) —> see next talk and Ivlev+) $10^{\circ} 10^{\circ} 10^{\circ} 10^{\circ} 10^{\circ} 10^{\circ} 10^{\circ}$ 10-10-10-10-10-10-10-10 Energy (MeV) ballistic? diffusive! Intro ...versus data theory... So?

SG & Montmerle 2015

So?

SG & Montmerle 2015

So?

