Cosmic-ray ionization in clouds and disks

Daniele Galli INAF-Osservatorio Astrofisico di Arcetri Firenze (Italy)

in collaboration with:

Marco Padovani (Arcetri) Alexei Ivlev (MPE Münich) Paola Caselli (MPE Münich) Al Glassgold (UC Berkeley)

Cosmic-ray physics at Arcetri in the 1920's

Bruno Rossi (Venice 1905- Cambridge 1993)

Enrico Fermi (Rome 1901- Chicago1954)

Bruno Rossi in Arcetri (1927-1932)

- At the time, CRs were believed to be energetic e.m. radiation (Millikan)
- Rossi firmly established the curpuscular nature of CRs by experiments with the triple-coincidence circuit ("Rossi circuit", today called "AND gate")
- Found that primary particles interacting with matter produced groups of secondary particles ("showers")

Rossi in his Arcetri laboratory (ca. 1930)

Rossi's triple coincidence circuit

COPIA

R. UNIVERSITA' DEGLI STUDI DI PADOVA

Prot. N. 7275 Addi 10 OTTOBRE 1938 XVI Pos. N. 48

Al Ch.mo Prof. BRUNO ROSSI

PADOVA

GETTO: Difesa della razza nella Scuola fascista.

Compio il dovere di avvertirVI che, in applicazione dell'art. 3 del Regio Decreto Legge 5 settembre 1938 XVI, n. 1390, recante provvedimenti per la difesa della razza nella scuola fascista, a datare dal 16 ottobre corrente siete sospeso dal servizio.

IL RETTORE

F.to Anti

Padua, October 10, 1938

Object: defense of the race in the fascist school

I have the duty to inform you that ... starting from October 16 you are suspended from service.

The University President

"I left Arcetri with a heavy heart. I was still young, and I knew that there would be, in my life, other periods of interesting and rewarding work. I also knew, however, that none would have the special flavor of my years on the Florentine hills."

B. Rossi "Moments in the life of a scientist" (1990)

Rossi's grave in the graveyard of the church of S. Miniato al Monte, Arcetri

- Importance of low-energy CRs in the ISM
- 1. Primary source of ionization in UV-shielded regions of MCs
- 2. Important source of heating in MCs
- 2. Drive the formation of polyatomic ions and molecules
- 4. Produce light elements (Li, Be, B) by spallation reaction

 $[p, \alpha]_{CR} + [C, N, O]_{ISM} \rightarrow [{}^{6}Li, {}^{7}Li, {}^{9}Be, {}^{10}B, {}^{11}B]$

5. Produce γ -ray diffuse emission by π_0 decay

 $p_{CR} + p_{ISM} \rightarrow \pi + \pi + \pi^0 \quad \pi^0 \rightarrow 2\gamma$

Consequence of 1:

- CR control the degree of coupling with B with gas (electrical resistivity)
 - \rightarrow efficiency of magnetic braking during protostellar collapse
 - \rightarrow efficiency of MRI instability in circumstellar disks

Spectrum of low-energy CR protons

Valdès-Galicia et al. (2006)

• Given a CR spectrum j(E) and ionization cross section $\sigma(E)$, the CR total ionization rate ζ_{CR} is

$$\zeta_{\rm CR} = 4\pi \Sigma_k \int j_k(E) [1 + \phi_k(E)] \sigma_k^{\rm ion}(E) \, dE$$

where $\phi(E)$ = secondary ionizations and k=e,p,He,...

• The CR heating is $\ \Gamma_{
m CR} = \zeta_{
m CR} Q n$

where Q is the heat deposited in the gas per ionization.

 Early studies by Spitzer & Tomasko (1968) for H and Glassgold & Langer (1973) for H₂

Advances in the last 4 decades:

- 1. Constraints on *j(E)* at low-E from Voyager 1 (Stone et al. 2012, etc.)
- 2. New observational data on ζ_{CR} in the ISM (McCall et al. 1998, etc.)

Voyager 1 proton spectrum

- Latest release: Cummings et al. (2016)
- V1 crossed termination shock in 2004 followed by V2 in 2007
- V1 crossed heliopause on August 25, 2012

Voyager 1 electron spectrum

Distance to the Heliopause along the V1 and V2 trajectories

Washimi et al. (2017)

CR-ionization of H₂

Cravens & Dalgarno (1978)

• Thomson (1912) and Bohr (1913) classical

$$\sigma_T^{\rm ion}(v) = \frac{4\pi Z^2 e^4}{m_e v^2} \left(\frac{1}{I} - \frac{2}{m_e v^2}\right) \qquad \langle E_e \rangle \to I \ln(m_e v^2/2I) \quad \text{if } v^2 \gg 2I/m_e$$

• Bethe (1930, quantistic) and Bethe (1932, quantistic relativistic)

$$\sigma_B^{\rm ion} = \frac{4\pi Z^2 e^4}{m_e c^2 \beta^2} \left[\ln \frac{2m_e c^2 \beta^2}{I(1-\beta^2)} - \beta^2 \right]$$

Cross section p_{CR} -H₂

Padovani, Galli & Glassgold (2009)

Cross section e_{CR} -H₂

Padovani, Galli & Glassgold (2009)

CR-induced chemistry

Hollenbach et al. (2012)

- $[H_3^+]$ in 21 diffuse molecular clouds ($f_{H_2} > 0.1$, Indriolo & McCall 2012) < $\zeta_{CR}(H_2) > = 3.5_{-3.0}^{+5.3} \times 10^{-16} s^{-1}$
- [OH^{+]}, [H₂O⁺], [H₃O⁺], in 20 diffuse atomic clouds (f_{H2} < 0.1, Indriolo et al. 2015)
 <ζ_{CR}(H)> = 1.8_{-0.9}^{+1.7} x 10⁻¹⁶ s⁻¹

Chemical model analysis (Neufeld & Wolfire 2017) $\langle \zeta_{CR}(H) \rangle = (2.2 \pm 0.3) \times 10^{-16} \text{ s}^{-1} \text{ from ArH}^+ \text{ OH}^+ \text{ H}_2\text{O}^+ \text{ in diffuse atomic clouds (f(H}_2)<0.1)$ $\langle \zeta_{CR}(H) \rangle = (2.3 \pm 0.6) \times 10^{-16} \text{ s}^{-1} \text{ from H}_3^+ \text{ in diffuse molecular clouds (f(H}_2)>0.1)$

 In dense molecular cloud cores [DCO⁺]/[HCO⁺] (Guélin et al. 1977) or [DCO⁺]/[HCO⁺] plus [HCO⁺]/[CO] (Caselli et al. 1998)

 \rightarrow see talks by Neufeld, Caselli, Oka, etc.

Indriolo et al. (2015)

Summary of observations of ζ_{CR} vs. N(H₂)

CR spectrum in the solar neighbourhood

CR spectrum in the solar neighbourhood

Energy losses of CR-protons and electrons in H₂

CR propagation in 1D cloud

• Padovani et al. (2009) considered propagation of CRs and their secondaries dominated by continuous losses (continuous slowing down approximation)

 $\frac{\partial j}{\partial N} - \frac{\partial}{\partial E}[L(E)j] = 0$ where L(E) is the loss function Flux N=10¹⁹ cm⁻² ~10²⁵ cm⁻² С) С) $j(E,N) = j^{\mathrm{IS}}(E_0) \frac{L(E_0)}{L(E)}$ interstellar spectrum $N = \int_{E_0}^{E} \frac{dE}{L(E)} dE$ Energy

• Extended by Padovani et al. (2018) to higher N and $E \rightarrow see talk by Ivlev$

CR ionization rate: results

Padovani, Galli & Glassgold (2009)

Comparison with observations

Comparison with diffuse clouds

- Diffuse cloud data from Neufeld & Wolfire (2017)
- Models by Padovani et al (2009, 2018)
- Slope log ζ log N: data -1, models -0.3

Ionization processes in a protostellar disk

- Inner disk: collisional ionization of alkali species (e.g. Na, K) $\rightarrow x_e \approx 10^{-3}$ at T $\approx 10^3$ K (R ≈ 0.1 -1 AU) \rightarrow good coupling with B
- Larger radii:
 - stellar FUV photons
 - stellar X-rays
 - stellar protons
 - CRs
 - short- and long-lived radionuclides
- Typical attenuation columns:
 - UV photons: ~ 10^{-3} g cm⁻²
 - 1 keV X-rays: ~ 0.5 g cm⁻²
 - CRs: ~ 100 g cm⁻²

- geometrically diluted as $1/r^2$

Vertical profile of disk ionization at 1 AU

- X-ray from Glassgold et al (1997), Ercolano et al. (2008)
- CRs from Padovani et al. (2009, 2018)
- SL and LL radionuclides from Umebayashi & Nakano (2009)

Vertical profile of disk ionization at 10 AU

Conclusions

- A high flux of low-energy CRs (below ~100 MeV) is needed to explain ionization in diffuse and dense clouds. Voyager spectra \rightarrow too low ζ_{CR} .
- Ionization in diffuse clouds: reliable data/modeling \rightarrow good constraints.
- Ionization in molecular cloud cores: more observations needed. Measurements of T_{gas} in UV-shielded dense cores can also constrain ζ_{CR} .
- Propagation dominated by losses $\rightarrow \zeta_{CR} \sim N(H_2)^{-\alpha}$ depending on IS spectrum with $\alpha \approx 0.3$ up to $N_H \approx 10^{25} \text{ cm}^{-2}$.
- Ionization in disks: crucial for disk dynamics (magnetic braking, MRI).
 Dominated by galactic CRs in the disk's midplane. Modulation by the protostellar wind unclear.