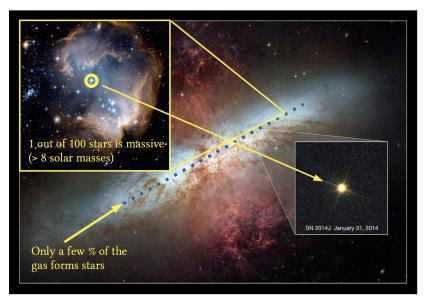
Dynamical and chemical impact of cosmic rays on the ISM


Philipp Girichidis

Georg Winner, Christoph Pfrommer (AIP)
Thorsten Naab (MPA Garching),
Stefanie Walch, Daniel Seifried (University of Cologne)
Michał Hanasz (Copernicus University Torun)

AIP Potsdam

May 2nd, 2018

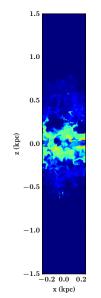
Observations: starburst galaxy M82 (Hubble)

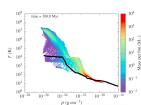
Observations: starburst galaxy M82 (Hubble)

- ullet strong outflows with $\eta=\dot{M}_{
 m outflow}/\dot{M}_*$ of a few
- big problem in galaxy formation and evolution!

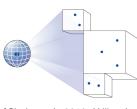
ISM details on different scales

SILCC: Simulating the LifeCycle of molecular Clouds

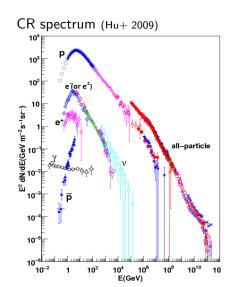

Walch+2015,


Girichidis+2016b

Lifecycle of molecular clouds Cooling & Collapse Naab et al., in prep 0.746 Myr proposed 0.08 pc Walch et al. (2011; in prep Stellar Feedback & Outflows


Setup for ISM simulations

- stratified box (deAvillez+2004, 2005, Kim & Ostriker+ 2013 - 2018, Hennebelle & Iffrig 2015)
- external potential (ρ_*)
- Magnetohydrodynamics
- atomic, mol., metal cooling (follow H⁺, H, H₂, C⁺, CO)
 (Glover et al. 2012, Walch et al. 2015)
- shielding effects (high optical depth)
- feedback from stars (SNe + CRs)
- MW conditions: $10 \, \frac{M_{\odot}}{\mathrm{pc}^2}$, Z_{\odot}


(Gatto et al. 2015)

(Clark et al. 2012, Wünsch et al. 2018)

CRs in the ISM

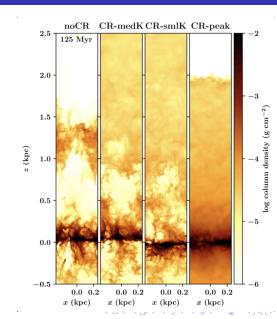
- CRs: similar energy densities as turbulence and magn. fields (Ferriere 2001)
- inefficient cooling (contrast to gas) different transport properties
- couple to gas via magnetic fields
- advection-diffusion approximation
- Galactic CRs generated in SN remnants (DSA, Axford et al. 1977; Krymskii 1977; Bell 1978; Blandford & Ostriker1978; Malkov & OC Drury 2001, Caprioli & Spitkovsky 2014)
- efficiency: 10% of SN energy

Combined MHD-CR equations (Girichidis+2016a)

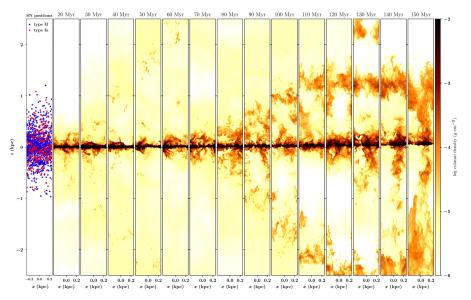
based on MHD-Solver HLLR3 (Bouchut et al. 2007, 2010, Waagan et al. 2009, 2011)

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} - \frac{\mathbf{B} \mathbf{B}}{4\pi} \right) + \nabla p_{\text{tot}} &= \rho \mathbf{g} \\ \frac{\partial e_{\text{tot}}}{\partial t} + \nabla \cdot \left[\left(e_{\text{tot}} + p_{\text{tot}} \right) \mathbf{v} - \frac{\mathbf{B} (\mathbf{B} \cdot \mathbf{v})}{4\pi} \right] &= \rho \mathbf{v} \cdot \mathbf{g} + \nabla \cdot (\mathbf{K} \cdot \nabla e_{\text{cr}}) + Q_{\text{cr}} \\ \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) &= 0 \\ \frac{\partial e_{\text{cr}}}{\partial t} + \nabla \cdot \left(e_{\text{cr}} \mathbf{v} \right) &= -p_{\text{cr}} \nabla \cdot \mathbf{v} + \nabla \cdot (\mathbf{K} \cdot \nabla e_{\text{cr}}) \\ &+ Q_{\text{cr}} \end{split}$$

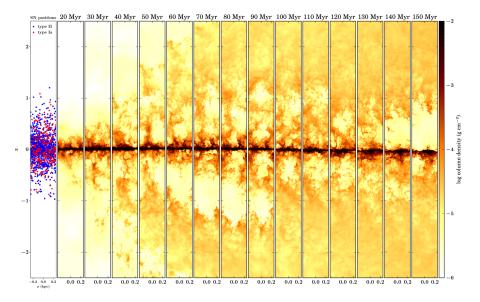
similar to Hanasz & Lesch 2003, Pfrommer et al. 2017

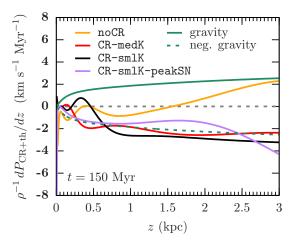

Time evolution with and without CRs

- left: no CRs
- middle: CRs

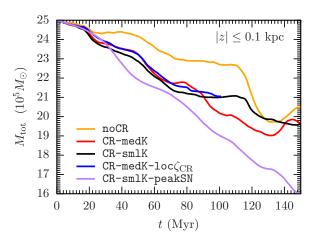

– medK: K $_{\parallel}=3\times10^{28}\,\frac{\mathrm{cm}^2}{\mathrm{s}}$

– smlK: K $_{\parallel}=1\times10^{28}\,\frac{\rm cm^2}{\rm s}$

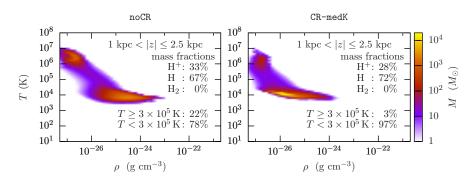

- right: CRs, SNe in peaks assume SNe explode where stars formed
- color: column density
- same SN rate


Time evolution without CRs (Girichidis+, subm.)

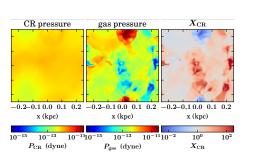
Time evolution including CRs (Girichidis+, subm.)



Net force balance


- thermal SNe: locally strong accelerations, temporal fluctuations
- incl. CR: smoother forces, net outward pointing force
- for slow CR diffusion: net pressure gradient exceeds gravity

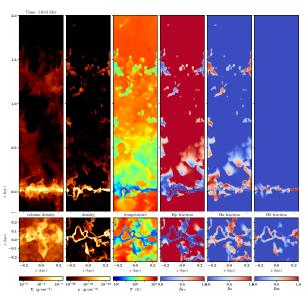
Outflow rates

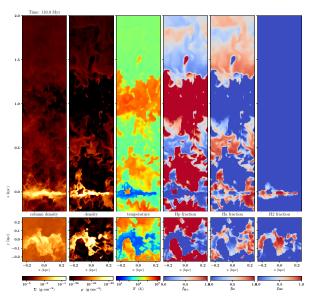

- CRs drive stronger outflows from the disk
- effective mass loading factors maesured at $2.5\,\mathrm{kpc}$ $\eta_\mathrm{therm} \approx 0.1$ (Kim+2018), $\eta_\mathrm{cr} \sim 0.7-1.4$ (Mao+2018)

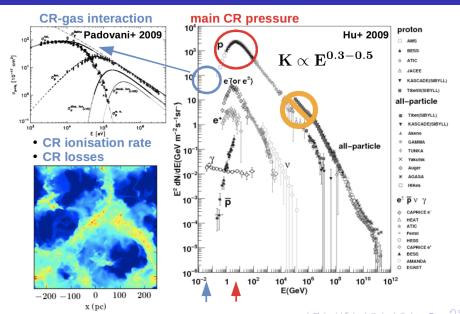
Composition of the outflow



- Thermal run produces more hot gas.
- CR-driven outflows are warm.


CR pressure and $X_{\rm CR}$


- smooth energy CR distribution
- CR pressure dominates in the disk
- region above the disk: equipartition
- ullet locally varying $\zeta_{
 m CR}$ no effect


chemical composition without CRs

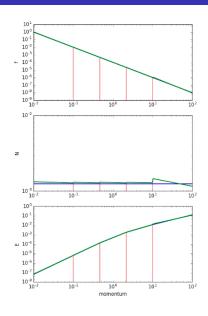
chemical composition including CRs

CR spectrum

CR equations

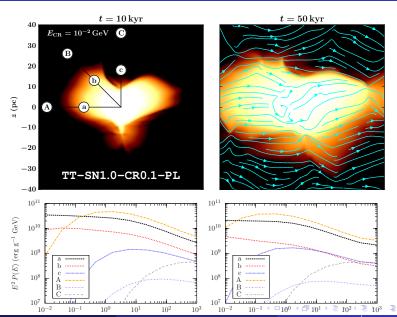
start with Fokker-Planck equation

$$\begin{split} \frac{\partial f}{\partial t} &= \underbrace{-\mathbf{u} \cdot \nabla f}_{\text{advection}} + \underbrace{\frac{\nabla \left(\kappa \nabla f\right)}{\text{diffusion}}} + \underbrace{\frac{1}{3} \left(\nabla \cdot \mathbf{u}\right) p \frac{\partial f}{\partial p}}_{\text{adiabatic process}} \\ &+ \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_p \frac{\partial f}{\partial p}\right) \right]}_{\text{other losses and Fermi II acceleration}} + \underbrace{j}_{\text{sources}} \end{split}$$


ullet chose piecewise powerlaws for f

$$f(p) = f_f \left(\frac{p}{p_f}\right)^{q_i},$$

derive number density and energy density


$$n_i = \int 4\pi p^2 f(p) dp \qquad e_i = \int 4\pi p^2 f(p) T(p) dp$$

Spectral grid

- ullet chose logarithmic bins in p
- compute spectrum in every cell
- \bullet compute changes of n and e
- \bullet reconstruct distribution function f,q
- standalone code coupled to FLASH and Arepo

different spectra at different positions

Conclusions

- CRs thicken the disk (influence on GMC formation, SN efficiency)
- ② CRs alone can drive and sustain outflows (mass loading ~ 1)
- **©** CRs create smooth and warm $(T\sim 10^4\,\mathrm{K})$ gas (disc & outflows)
- We need spectrally resolved CR transport