VENTSPILS AUGSTSKOLA

VIRAC

Juris Kalvāns

Engineering Research Institute «Ventspils International Radio Astronomy Center» of Ventspils University College, Inženieru 101, Ventspils, Latvia, LV-3601 (VIRAC)

Cosmic-ray induced diffusion, reactions and destruction of molecules in interstellar ices

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Micro- to macroscopic perspective

Cosmic ray particles impact icy interstellar grains

Composition of interstellar gas and ices

Mainitz *et al.* 2016, A&A 592

ESO and Igor Chekalin

Cosmic-ray (CR) impact

- Excitation and ionization
- Heating along the CR track
- Destruction of molecules
- Sputtering

• Time-scale $\leq 10^{-10}$ s

Relaxation

- Heat expands to the whole grain, reaching a temperature of 70 K for 10⁻⁵ s
- Molecule diffusion and evaporation
- Cooling via evaporation or radiation

CR-induced processing of icy species

- Sputtering
- Dissociation
- Local heating
 - diffusion
 - evaporation
 - reactions
- Whole-grain heating
 - diffusion
 - evaporation
 - reactions
- Ice explosions

Image credits: ESO and Igor Chekalin

In astrochemical models

- Sputtering ineffective
- Dissociation not investigated
- Local heating
 - diffusion not investigated
 - evaporation ineffective
 - reactions not investigated
- Whole-grain heating
 - diffusion important for complex molecules
 - evaporation important
 - reactions not investigated
- Ice explosions do they occur?

Image credits: ESO and Igor Chekalin

To be modelled

- SputteringDissociation
- Local heating
 - diffusionevaporation
 - reactions
- Whole-grain heating
 - diffusion
 evaporation
 reactions
- Ice explosions

Sequence of CRinduced grain surface processes

Image credits: ESO and Igor Chekalin

Sequence for surface molecules

- Dissociation, high-temperature reactions
- Local-heating grain surface chemistry
- Whole-grain heating surface chemistry
- Cooling via CO evaporation

The models

- Kinetic rate-equation astrochemical simulations
- #1: starless cloud core; t = 1 Myr
 n_H = 2×10⁴ cm⁻³; T_{dust} = 10 K
- #2: Collapsing prestellar core; t = 1+0.4 Myr
 n_H = 3×10³ ... 10⁷ cm⁻³; T_{dust} = 6 ... 35 K

Macroscopic effects of CR-induced processes in interstellar ices

CR-induced

dissociation

- Dissociation rates derived from experiments
- Produces radicals in ices
- Subsequent reactions in icy mantles affect ice composition

Selected experimental results of interstellar ice analog irradiation by heavy ions.

No.	Species	Initial	Ion	Energy,	Т, К	Cross section	Source	Used in
		mixture		MeV		σ_d , cm ²		model?
1	CH_3	CH_4	$56Fe^{22+}$	267	15	4.57E-13	Mejía et al. (2013)	yes
2	CH_3	CH_4	$_{70}$ Zn ²⁶⁺	606	15	1.99E-13	Mejía et al. (2013)	
3	CH_4	CH_3OH	$_{70}$ Zn ²⁶⁺	606	15	9.80E-14	de Barros et al. (2011)	
4	CH_4	CH_4	$56Fe^{22+}$	267	15	6.80E-14	Mejía et al. (2013)	yes
5	CH_4	CH_4	$_{70}$ Zn ²⁶⁺	606	15	7.20E-14	Mejía et al. (2013)	
6	H_2O	HCOOH	$56Fe^{22+}$	267	15	2.20E-13	Andrade et al. (2013)	
7	H_2O	H_2O	58Ni ¹³⁺	52	13	1.10E-13	Pilling et al. (2010b)	
8	H_2O	$H_2O:CO_2$ 10:1	58Ni ¹³⁺	52	13	1.00E-13	Pilling et al. (2010b)	
9	H_2O	$H_2O:CO_2$ 1:1	58Ni ¹³⁺	52	13	1.00E-13	Pilling et al. (2010b)	
10	H_2O	$H_2O:NH_3$ 2:1	58Ni ¹³⁺	46	13	2.00E-13	Pilling et al. (2010a)	
11	H_2O	H ₂ O:NH3CO 5:3:2	58Ni ¹³⁺	46	13	2.00E-13	Pilling et al. (2010a)	yes
12	NH_3	$H_2O:NH_3$ 2:1	58Ni ¹³⁺	46	13	1.30E-13	Pilling et al. (2010a)	
13	NH_3	H ₂ O:NH3CO 5 3:2	58Ni ¹³⁺	46	13	1.40E-13	Pilling et al. (2010a)	yes
14	C_2H_2	CH_4	$56Fe^{22+}$	267	15	3.60E-14	Mejía et al. (2013)	yes
15	C_2H_2	CH_4	$_{70}$ Zn ²⁶⁺	606	15	1.70E-14	Mejía et al. (2013)	
16	C_2H_4	CH_4	$56Fe^{22+}$	267	15	1.27E-13	Mejía et al. (2013)	yes
17	C_2H_4	CH_4	$_{70}$ Zn ²⁶⁺	606	15	1.40E-13	Mejía et al. (2013)	
18	C_2H_6	CH_4	$56Fe^{22+}$	267	15	1.77E-13	Mejía et al. (2013)	yes
19	C_2H_6	CH_4	$_{70}$ Zn ²⁶⁺	606	15	1.56E-13	Mejía et al. (2013)	
20	CH_2OH	CH_3OH	$_{70}$ Zn ²⁶⁺	606	15	9.21E-14	de Barros et al. (2011)	yes
21	CH_3OH	CH ₃ OH	$_{70}$ Zn ²⁶⁺	606	15	1.38E-13	de Barros et al. (2011)	yes
22	CO	HCOOH	56Fe ²²⁺	267	15	2.10E-13	Andrade et al. (2013)	yes
23	CO	CH ₃ OH	70Zn ²⁶⁺	606	15	4.40E-14	de Barros et al. (2011)	
24	CO	CO_2	58Ni ¹³⁺	52	13	1.10E-12	Pilling et al. (2010b)	
25	CO	CO2H ₂ O 1:10	58Ni13+	52	13	7.30E-13	Pilling et al. (2010b)	
26	CO	CO2H ₂ O 1:1	58N113+	52	13	4.40E-13	Pilling et al. (2010b)	yes
27	CO	H ₂ O:NH3CO 5:3:2	58N113+	46	13	1.90E-13	Pilling et al. (2010a)	
28	CO	CO	58N113+	50	13	1.00E-13	Seperuelo Duarte et al. (2010)	
29		00	64N124+	537	13	3.50E-14	Seperuelo Duarte et al. (2010)	
30	H ₂ CO	CH ₃ OH	70Zn20+	606	15	6.45E-13	de Barros et al. (2011)	
31	H_2O_2	H ₂ O	58N113+	52	13	1.00E-12	Pilling et al. (2010b)	
32	H_2O_2	$H_2O:CO_2$ 10:1	58 N113+	52	13	9.30E-13	Pilling et al. (2010b)	yes
33	H_2O_2	$H_2O:CO_2$ 1:1	58 N113+	52	13	6.90E-13	Pilling et al. (2010b)	
34	CO ₂	HCOOH	56Fe ²²⁺	267	15	2.30E-13	Andrade et al. (2013)	yes
35	CO ₂	HCOOH	56Fe+	267	15	2.20E-13	Andrade et al. (2013)	
36	CO ₂	CH ₃ OH	70Zn20+	606	15	2.40E-13	de Barros et al. (2011)	
37	CO ₂	UO2	58 N113+	52	13	1.80E-13	Pilling et al. (2010b)	
38	CO ₂	$H_2O:CO_2$ 10:1	58 N113+	52	13	(0.7-1)E-13	Pilling et al. (2010b)	
39	CO ₂	$H_2O(OO_2) I(1)$	58 N110+	52	13	(1.6-2.1)E-13	Plling et al. (2010b)	
40			58 N111+	40	13	1.70E-13	Seperuelo Duarte et al. (2009)	
41	нсоон	нсоон	56Fe-2+	267	15	≈ 1E-12	Andrade et al. (2013)	yes
42	03	CO21 0 1-1	58 N113+	52	13	1.60E-12	Pilling et al. (2010b)	
43		CO2H ₂ O 1:1	58 N115+ 7-26+	52	13	5.00E-13	Pilling et al. (2010b)	yes
44	CH ₃ OCHO	CH ₃ OH	70Zn23+	500	15	5.88E-13	Dilling at al. (2011)	
45	CO3	CONL-0 11	58IN113+	52	13	9.70E-12 9.10E-10	Dilling et al. (2010b)	
40	U CO3	CO2H2O 1:1	58IN110+	52	13	3.10E-12 0.00E-12	Dilling et al. (2010b)	
47	H_2CO_3	CO2H ₂ O 1:1	58 N110+	52	13	9.90E-13	Filling et al. (2010b)	

CR induced dissociation: results

- Induces abundance changes within 10 % for abundant icy species (H₂O, CO, CO₂)
- Favors carbon chains (C₈, C₃N, etc.), with abundance increases by up to a factor of 100
 Results of Model #2, (pre)stellar core

Species	Abund.	Ratio	Species	Abund.	Ratio	Species	Abund.	Ratio	Species	Abund.	Ratio
C ₃ N	2.4E-13	118	C_4H_4	5.8E-12	2.59	HC ₃ N	2.1E-10	1.56	H_2O	1.3E-04	0.996
C_2N	1.6E-11	26.2	CH ₃ C ₅ N	4.9E-14	2.55	S_2	3.4E-12	1.55	N_2	2.6E-05	0.995
HCCN	1.7E-11	25.2	NS	4.7E-08	2.54	CH ₃ CN	2.5E-09	1.44	CO	8.9E-05	0.983
C_2H_2N	2.4E-11	12.3	C ₃ S	1.3E-11	2.34	CH ₃ OCH ₃	2.8E-12	1.37	H_2S	6.1E-07	0.978
CN	1.1E-09	5.52	C_6H_2	4.5E-12	2.34	C_2H_5OH	2.8E-12	1.37	HCOOCH ₃	2.6E-13	0.971
CS	9.5E-09	4.97	HC ₅ N	1.1E-12	2.06	C_2H_6	3.4E-08	1.23	HCOOH	8.1E-09	0.968
HCS	1.0E-08	4.94	C_5H_2	4.6E-11	2.00	H_2CCO	1.6E-11	1.22	H_2O_2	2.0E-06	0.927
C ₂ H ₅ CN	2.0E-12	4.67	C_4N	1.7E-13	2.00	C_2H_4	1.3E-08	1.18	O ₃	9.4E-13	0.477
H_2CS	1.3E-07	4.29	CH ₃ C ₃ N	1.4E-11	1.87	NH ₂ CHO	4.8E-10	1.18	SO_2	2.3E-10	0.427
HNC	3.8E-08	3.39	C_4H_2	4.9E-10	1.77	NH ₂	1.0E-07	1.03	O_2	2.3E-10	0.415
C_6H_6	9.1E-14	3.10	C_2H_2	4.2E-10	1.75	CO_2	5.0E-05	1.02	O_2H	2.4E-10	0.405
HC ₇ N	1.0E-14	3.00	CH ₃ CHO	1.9E-13	1.67	CH_4	1.4E-07	1.02	SO	6.6E-08	0.368
CH ₃ C ₄ H	8.2E-13	2.69	HCN	2.4E-08	1.66	NH ₃	1.9E-05	1.01	C_2S	2.4E-12	0.228
		Gas, 1.388 Myr									
H_2CCO	1.8E-12	1.41	N ₂ O	1.1E-12	1.30	H ₂ O	1.3E-11	1.24	HNC	2.8E-10	1.12
H_2CO	2.7E-11	1.38	CO_2	1.2E-08	1.29	C_2H_6	1.8E-12	1.24	HCN	4.6E-10	1.12
C_3	7.4E-12	1.30	C_3H_2	1.2E-12	1.28	CH_4	4.4E-08	1.18	O ₂	2.7E-10	0.42

-H2CS

••••CS

Fig. 5. Abundance, relative to hydrogen, of selected ice molecules in model with CR-induced dissociation. The respective abundances from the orference model are shown for comparison.

Local heating: chemistry in 'ice fluid'

 A high-temperature fluid is formed in the icy mantle along the CR track for ~10⁻¹⁰ s

(Mainitz et al. 2016)

- The dissociation products first appear in this fluid
- No chemical signature found from modelled reactions in the fluid with T = 300 K

Whole grain heating: surface diffusion

- CR-induced diffusion of surface species at 70 K promotes formation of complex organic molecules
- Observable effect primarily at low extinctions $(A_V \approx 3^m)$
- Reference: Reboussin *et al.* 2014, MNRAS 440

Figure 5. Surface species abundances of a selection of molecules as a function of time computed for different visual extinctions. The results obtained with Model A are represented by black lines and grey lines represent those obtained with Model C. For $A_{V=10}$, the curves are superimposed.

Figure 6. Grain-surface abundances of simple (top) and complex molecules (bottom) as a function of time for $A_V=3$. Black lines are the results obtained with Model A and grey lines the results obtained with Model C.

Whole-grain heating: exchange between surface and bulk-ice

- Thermal diffusion enables diffusion of molecules between different layers of ice
- Effects:
 - removal of H_2 from the icy mantle \rightarrow less efficient hydrogenation; more oxidized molecules
 - mixing of CO and H₂O:NH₃ ice layers promotes organic chemistry
 - more carbon chains thanks to enhanced mobility of C atoms (CO photodissociation product)
 - abundances of major species affected by no more than a few per cent

Species	Abund.	Ratio	Species	Abund.	Ratio	Species	Abund.	Ratio	Species	Abund.	Ratio
C_8H_2	2.6E-13	16.2	HC ₂ NC	1.6E-12	3.24	C_2H_4	1.4E-08	1.30	NH ₃	2.0E-05	1.03
HC ₇ N	4.5E-14	12.9	HC ₃ N	3.8E-10	2.87	CH ₃ NH ₂	4.2E-08	1.23	H_2S	6.3E-07	1.01
C_6H_6	3.8E-13	12.9	HNC ₃	1.8E-13	2.55	O ₃	2.4E-12	1.22	H_2O	1.3E-04	1.00
CH_3C_4H	2.9E-12	9.62	CH ₃ CHO	2.7E-13	2.29	HNC	1.4E-08	1.20	CO_2	4.8E-05	0.999
CH ₃ C ₅ N	1.5E-13	7.98	CH ₃ CN	3.3E-09	1.92	NH ₂	1.2E-07	1.16	CO	9.0E-05	0.994
C_6H_2	1.3E-11	6.80	H_2C_3O	6.3E-12	1.83	OCS	1.7E-08	1.14	HNO	7.7E-08	0.988
C_4H_4	1.5E-11	6.70	H ₂ CCO	2.1E-11	1.67	CS	2.2E-09	1.13	SO	1.8E-07	0.985
HC_5N	2.8E-12	5.35	CH ₃ OCH ₃	3.2E-12	1.60	CN	2.2E-10	1.13	N_2	2.6E-05	0.985
CH ₃ C ₃ N	2.9E-11	3.92	C ₂ H ₅ OH	3.2E-12	1.60	SO ₂	6.1E-10	1.13	NS	1.8E-08	0.984
C_2H_2	9.0E-10	3.70	HNCO	1.4E-09	1.48	HCN	1.6E-08	1.12	H_2CS	3.0E-08	0.974
C_4H_2	9.8E-10	3.55	C_2H_6	3.9E-08	1.40	O ₂	6.1E-10	1.09	S_2	1.8E-12	0.841
					Gas, 1.3	88 Myr					
H_2CCO	3.5E-12	2.67	C_3H_2	1.8E-12	1.95	CH_4	6.1E-08	1.65	HNC	3.2E-10	1.28
H_2CO	4.5E-11	2.26	CH ₃ NH ₂	1.2E-12	1.95	C_2H_2	9.6E-11	1.54	HCN	5.2E-10	1.28
H_2S	1.4E-12	2.14	CO_2	1.7E-08	1.87	C_2N	1.1E-11	1.50	HNO	3.8E-11	1.17
C_3	1.1E-11	2.02	N ₂ O	1.6E-12	1.86	C_2H_6	2.1E-12	1.48	CO	1.2E-05	1.04
OCS	1.1E-12	2.01	H ₂ O	1.7E-11	1.71	NO	1.5E-11	1.33	O ₂	5.6E-10	0.890

Results of Model #2, (pre)stellar core

Whole-grain heating: reactions in ice

- Facilitates overcoming of diffusion and reaction barriers for molecules on the surface and in bulk ice
- Results similar to those for diffusion on warm grains (carbon chains and complex organics promoted)

			Ice, 1.35 Myr								
Species	Abund.	Ratio	Species	Abund.	Ratio	Species	Abund.	Ratio	Species	Abund.	Ratio
C_8H_2	2.4E-13	15.0	C_4H_2	9.5E-10	3.43	C_2H_6	3.9E-08	1.40	HCN	1.6E-08	1.11
C_6H_6	3.5E-13	12.0	HC ₂ NC	1.5E-12	3.05	C_2H_4	1.4E-08	1.30	O ₂	6.1E-10	1.09
HC_7N	4.0E-14	11.7	HC ₃ N	3.6E-10	2.71	CH_3NH_2	4.1E-08	1.21	NH ₃	2.0E-05	1.03
C_7H_2	1.6E-12	9.55	CH ₃ CHO	2.6E-13	2.25	O ₃	2.4E-12	1.20	H_2S	6.3E-07	1.01
CH_3C_4H	2.7E-12	9.02	CH ₃ CN	3.2E-09	1.84	HNC	1.3E-08	1.18	H_2O	1.3E-04	1.00
CH ₃ C ₅ N	1.4E-13	7.40	H_2C_3O	6.1E-12	1.78	NH ₂	1.2E-07	1.15	CO_2	4.8E-05	0.998
C_6H_2	1.2E-11	6.45	H_2CCO	2.1E-11	1.64	OCS	1.7E-08	1.13	CO	9.0E-05	0.994
C_4H_4	1.4E-11	6.31	C_3H_4	1.1E-09	1.64	N_2H_2	1.6E-08	1.13	H_2O_2	2.2E-06	0.994
HC ₅ N	2.6E-12	4.95	CH ₃ OCH ₃	3.3E-12	1.62	CS	2.1E-09	1.12	N_2	2.6E-05	0.985
CH_3C_3N	2.7E-11	3.71	C ₂ H ₅ OH	3.3E-12	1.62	SO ₂	6.1E-10	1.12	S ₂	1.9E-12	0.851
C_2H_2	8.7E-10	3.58	HNCO	1.4E-09	1.46						
					Gas, 1.3	88 Myr					
H_2CCO	3.3E-12	2.55	CH ₃ NH ₂	1.2E-12	1.87	CH_4	6.0E-08	1.61	HNC	3.1E-10	1.26
H_2CO	4.3E-11	2.18	CO ₂	1.7E-08	1.82	C_2H_2	9.4E-11	1.51	HCN	5.1E-10	1.25
H_2S	1.4E-12	2.09	N_2O	1.5E-12	1.80	C_2H_6	2.1E-12	1.48	HNO	3.8E-11	1.16
OCS	1.1E-12	1.97	C_2	5.5E-12	1.65	C_2H_2N	1.7E-12	1.37	CO	1.2E-05	1.04
C_3H_2	1.7E-12	1.90	H_2O	1.7E-11	1.64	NO	1.5E-11	1.31	O ₂	5.7E-10	0.898

The complete model

- Combined CR-induced dissociation and chemistry induced by whole-grain heating
- Dissociation dominates but the produced radicals tend to combine into smaller molecules on the warm grains

Fig. 6. Abundance, relative to hydrogen, of selected ice molecules in the combined model. The respective abundances from the reference model are shown for comparison.

						Ice, 1.35 I	Myr					
ו	Species	Abund.	R.ref.	R.crd.	Species	Abund.	R.ref.	R.crd.	Species	Abund.	R.ref.	R.crd.
	C_3N	2.2E-13	104	0.883	C ₆ H ₂	2.1E-12	1.10	0.470	NO	3.8E-15	0.997	1.413
	C_2N	1.5E-11	23.8	0.911	HC ₅ N	5.7E-13	1.09	0.529	H ₂ O	1.3E-04	0.995	0.999
	HCCN	1.6E-11	23.6	0.934	CH ₃ NH	1.4E-11	1.09	0.960	CH ₂ NH ₂	6.5E-10	0.992	0.921
	C_2H_2N	2.3E-11	11.6	0.948	CH_3C_4H	3.3E-13	1.08	0.402	HNO	7.7E-08	0.991	1.006
	H_2C_3N	4.4E-13	9.60	0.918	C ₅ H ₂	2.5E-11	1.08	0.540	H_2C_3O	3.4E-12	0.990	0.839
	C_3H_3N	6.0E-13	7.19	0.944	CH ₃ N	2.7E-11	1.07	0.944	CH_4O	3.5E-10	0.989	0.993
	H_4C_3N	6.7E-13	6.28	0.975	HC_2NC	5.3E-13	1.07	0.629	CO	8.9E-05	0.984	1.001
	OCN	3.5E-12	5.64	0.908	C_4H_2	2.9E-10	1.07	0.602	NO ₂	4.8E-11	0.982	1.008
	CN	1.0E-09	5.24	0.950	CH ₃ C ₃ N	7.8E-12	1.06	0.567	NH ₂ CN	3.8E-11	0.978	0.993
	C_2H_5CN	2.1E-12	4.86	1.041	HC ₃ N	1.4E-10	1.06	0.677	H ₂ SIO	1.9E-09	0.976	1.000
	HCS	9.8E-09	4.72	0.956	OCS	1.6E-08	1.05	0.943	H ₂ S	6.1E-07	0.976	0.998
	CS	9.0E-09	4.70	0.946	C_3H_2	2.8E-09	1.05	0.668	H_2S_2	5.8E-11	0.975	0.999
	H_2CS	1.4E-07	4.34	1.010	C ₃ H ₄	7.0E-10	1.04	0.821	H ₂ CO	1.9E-08	0.974	0.997
	C_4H_3	1.5E-13	4.31	0.920	C_2H_4	1.2E-08	1.04	0.877	HCOOCH ₃	2.6E-13	0.970	0.999
	HNC	3.7E-08	3.31	0.977	CH ₂ PH	1.2E-13	1.03	0.496	HS	6.1E-07	0.969	1.002
	C_2H_5	2.1E-13	3.30	0.975	CH ₃ NH ₂	3.5E-08	1.03	0.921	HCOOH	8.1E-09	0.968	1.000
	C_2	6.1E-13	3.13	0.951	CO ₂	5.0E-05	1.03	1.001	H ₂	6.3E-15	0.967	1.255
	NS	4.7E-08	2.56	1.005	C_2H_2	2.5E-10	1.03	0.587	NH ₂	9.7E-08	0.964	0.941
	C ₃ S	1.3E-11	2.33	0.995	C_2H_6	2.8E-08	1.02	0.831	HS ₂	5.8E-11	0.964	0.999
	S ₂	3.6E-12	1.64	1.058	CH ₃ OCH ₃	2.1E-12	1.02	0.745	C ₃ H ₃	1.4E-11	0.962	0.912
	HCN	2.4E-08	1.63	0.980	C ₂ H ₅ OH	2.1E-12	1.02	0.745	C ₃ H	6.1E-13	0.953	0.857
	C_4H_4	3.3E-12	1.47	0.565	CH_4	1.4E-07	1.02	1.002	H_2O_2	2.0E-06	0.924	0.996
	NH ₂ CHO	4.8E-10	1.18	1.000	N_2H_2	1.4E-08	1.02	0.949	O ₃	8.6E-13	0.438	0.919
	CH ₃ CN	2.0E-09	1.14	0.794	HNCO	9.5E-10	1.01	0.891	SO ₂	2.2E-10	0.405	0.949
	C_8H_2	1.8E-14	1.14	0.335	NH	5.3E-13	1.00	1.002	O ₂	2.2E-10	0.399	0.963
	CH_3CHO	1.3E-13	1.13	0.680	C_2H_2O	1.3E-11	1.00	0.819	O ₂ H	2.3E-10	0.395	0.976
	HC_7N	3.9E-15	1.13	0.377	N_2	2.7E-05	0.999	1.004	SO	6.7E-08	0.371	1.007
	C_7H_2	1.8E-13	1.12	0.402	NH ₃	1.9E-05	0.998	0.990	C ₂ S	2.4E-12	0.229	1.006
	C ₆ H ₆	3.3E-14	1.12	0.360	N ₂ O	2.7E-09	0.997	1.000				
						Gas, 1.388	Myr					
	C ₃	5.9E-12	1.04	0.80	H ₂ CO	2.0E-11	1.02	0.74	NH ₃	6.8E-10	1.01	1.00
	C_2H_6	1.5E-12	1.03	0.83	H_2O	1.0E-11	1.02	0.82	CO	1.1E-05	0.99	0.99
	HNC	2.5E-10	1.02	0.91	CO ₂	9.4E-09	1.01	0.78	O ₂	2.7E-10	0.43	1.02
	HCN	4.2E-10	1.02	0.92	CH_4	3.7E-08	1.01	0.86				

Conclusions

- Among the CR-induced surface processes, dissociation is probably the most important, behind desorption.
- Abundances of major icy species are affected by no more than 5-10 %. This determines the amount of atoms available for the synthesis of minor species.

Problems, challenges, future

- This research has to be re-done with new CR spectra!
- More **experimental cross-sections** welcome for CRinduced dissociation; especially, for complex species.
- **Radiative grain cooling** must be considered: surface CO not available for grains in diffuse gas
- Grain heating by **light CR elements** to temperatures of 30-40 K occurs 100 times as often and is important!

•

Figure 2. Calculated relative abundances of gas-phase CO for a model without CRD and models with different WGH temperatures $T_{\rm CR}$ as indicated.

Questions?

ESO/IDA/Danish 1.5 m/R. Gendler, J.-E. Ovaldsen, C. Thöne and C. Féron