IN-SITU ENERGETIC PARTICLES* ACCELERATION IN YOUNG STELLAR OBJECTS

Alexandre Marcowith (Laboratoire Univers Particules Montpellier, France) <u>collaboration</u>:

A. Araudo (Astronomical Institute, Czech Republic), M.Padovani (Arcetri observatory, Italy), K.Ferrière (I.R.A.P., France), P.Hennebelle (AIM-CEA, France)

based on:

Padovani et al 2015, A&A, 582, L13 Padovani et al 2016, A&A, 590, A8. Araudo et al, in prep., MNRAS.

* possibly Cosmic Rays, but for our purpose not necessarily ...

Non-thermal emission in YSO

- Radio emission with negative indices (synchrotron radiation, at cm wavelength):
 - NGC 6334I-CM2 [Brogan +2016]. , α=-0.5
 - W3(H₂O)-W3(OH) [Wilner +1999, Reid +1995], α=-0.6
 - **HH80-81** [Marti +1993, Rodriguez-Kamenetzky +2017], α=-0.5(+/-0.4) or smaller.
 - IRAS 16547-4247 [Garay +1996, Rodriguez +2005]. , α=-0.6 (+/-0.2)
 - **Serpens** [Rodriguez-Kamenetzky +2016], α=-0.35(+/-0.02)
 - OMC2-FIR3 [Osorio +2017]. α=-0.59 (+/-0.2), α=-1.07 (+/-0.07), α=-1.3 (+/-0.4)
 - **L778-VL6** [Girart +2002]. , α=-0.82(+/-0.04)
 - **DGTau** [Ainsworth +2014], α =-0.89 (+/-0.07) and in the Taurus molecular cloud region [Ainsworth + 2016].
 - 13 more southern sources [Purser +2017] with $<\alpha>=-0.55$
 - Several sources in the Perseus molecular cloud [Tychionec +2018].
 - Usually a low polarization (<10%) but linearly polarized emission in HH80-81 [Carrasco-Gonzalez + 2010].
- Hard non-thermal (?) X-rays (E> 2keV):
 - HH80-81 [Lopez-Santiago +2013]

3 mai 2018

HH80-81/IRAS18162-2048 non-thermal emission details

Intensity and index map of the collimated jet region (JVLA, 4-6 GHz).

positive index ⇔ narrow jet regions negative index ⇔ the jet widens

may be interpreted as recollimation shocks in the jet pattern.

Rodriguez-Kamenetzky + 2017

Ionization rates "anomalies"

High ionization rates measurements (see also Favre + 2017)

OMC2-FIR4 : Ceccarelli + 2014

Herschel observations of HCO^+ , N_2H^+ ion species

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$											
Adopted SolutionaRange SolutionaAdopted SolutionaRange SolutionaResults from the non-LTE LVG analysisH2 density (cm ⁻³) 4.0×10^7 $1-80 \times 10^7$ 1.2×10^6 $0.8-2 \times 10^{-1}$ H2 density (cm ⁻³) 4.0×10^7 $1-80 \times 10^7$ 1.2×10^6 $0.8-2 \times 10^{-1}$ Source ratius (K)12075-15040 $30-4$ Source size (arcsec)8 $6-15$ 18 $17-2$ Source radius (AU)16001250-3000 3700 $3500-5$ N(HCO ⁺) (cm ⁻²) 7×10^{13} $6-15 \times 10^{13}$ 3×10^{14} $2-6 \times 10^{-12}$ N(N2H ⁺) (cm ⁻²) 3×10^{13} $2-5 \times 10^{13}$ 1×10^{14} $0.5-2 \times 10^{-12}$ HCO ⁺ /N2H ⁺ 3.5 $3-4$ 3.5 $3-4$ Results from the chemistry analysisCR ion. rate ζ (s ⁻¹) 6×10^{-12} $\geq 1.5 \times 10^{-12}$ 4×10^{-14} $1.5-8 \times 10^{-12}$	2	Warm	Component	Envelope							
Results from the non-LTE LVG analysisH2 density (cm ⁻³) 4.0×10^7 $1-80 \times 10^7$ 1.2×10^6 $0.8-2 \times 10^{-1}$ Temperature (K)12075-15040 $30-4$ Source size (arcsec)86-1518 $17-2$ Source radius (AU)16001250-30003700 $3500-5$ N(HCO ⁺) (cm ⁻²) 7×10^{13} $6-15 \times 10^{13}$ 3×10^{14} $2-6 \times 10^{-12}$ N(N2H ⁺) (cm ⁻²) 3×10^{13} $2-5 \times 10^{13}$ 1×10^{14} $0.5-2 \times 10^{-12}$ HCO ⁺ /N2H ⁺ 3.5 $3-4$ 3.5 $3-4$ Results from the chemistry analysisCR ion. rate ζ (s ⁻¹) $6 \times 10^{-12} \ge 1.5 \times 10^{-12}$ 4×10^{-14} $1.5-8 \times 10^{-12} \ge 1.5 \times 10^{-12}$		Adopted Solution ^a	Range	Adopted Solution ^a	Range						
H₂ density (cm ⁻³)4.0 × 10 ⁷ 1-80 × 10 ⁷ 1.2 × 10 ⁶ 0.8-2 ×Temperature (K)12075-1504030-4Source size (arcsec)86-151817-2Source radius (AU)16001250-300037003500-5N(HCO ⁺) (cm ⁻²)7 × 10 ¹³ 6-15 × 10 ¹³ 3 × 10 ¹⁴ 2-6 × 1N(N₂H ⁺) (cm ⁻²)3 × 10 ¹³ 2-5 × 10 ¹³ 1 × 10 ¹⁴ 0.5-2 ×HCO ⁺ /N₂H ⁺ 3.53-43.53-4Results from the chemistry analysisCR ion. rate ζ (s ⁻¹)6 × 10 ⁻¹² ≥ 2 × 10 ⁻⁸ 6 × 10 ⁻¹⁴ 1.5-8 × 10 ⁻¹⁴	Results from the non-LTE LVG analysis										
Temperature (K)12075–1504030–4Source size (arcsec)86–151817–2Source radius (AU)16001250–300037003500–5 $N(HCO^+)$ (cm ⁻²)7 × 10 ¹³ 6–15 × 10 ¹³ 3 × 10 ¹⁴ 2–6 × 1 $N(N_2H^+)$ (cm ⁻²)3 × 10 ¹³ 2–5 × 10 ¹³ 1 × 10 ¹⁴ 0.5–2 × HCO^+/N_2H^+ 3.53–43.53–4Results from the chemistry analysisCR ion. rate ζ (s ⁻¹)6 × 10 ⁻¹² $\geq 1.5 \times 10^{-12}$ 4 × 10 ⁻¹⁴ 1.5–8 × 10	H ₂ density (cm ⁻³)	4.0×10^{7}	$1-80 \times 10^{7}$	1.2×10^{6}	$0.8-2 \times 10^{6}$						
Source size (arcsec) 8 6-15 18 17-2 Source radius (AU) 1600 1250-3000 3700 3500-5 $N(\text{HCO}^+)$ (cm ⁻²) 7 × 10 ¹³ 6-15 × 10 ¹³ 3 × 10 ¹⁴ 2-6 × 1 $N(\text{N}_2\text{H}^+)$ (cm ⁻²) 3 × 10 ¹³ 2-5 × 10 ¹³ 1 × 10 ¹⁴ 0.5-2 × HCO ⁺ /N ₂ H ⁺ 3.5 3-4 3.5 3-4 Results from the chemistry analysis CR ion. rate ζ (s ⁻¹) 6 × 10 ⁻¹² \geq 1.5 × 10 ⁻¹² 4 × 10 ⁻¹⁴ 1.5-8 × 1 $= (\text{MCO}^+\text{I}^+)$ $\leq 10^{-12} \geq$ 1.5 × 10 ⁻¹² 4 × 10 ⁻¹⁴ 1.5-8 × 1	Temperature (K)	120	75-150	40	30-45						
Source radius (AU) 1600 1250–3000 3700 3500–5 $N(\text{HCO}^+)$ (cm ⁻²) 7 × 10 ¹³ 6–15 × 10 ¹³ 3 × 10 ¹⁴ 2–6 × 1 $N(N_2\text{H}^+)$ (cm ⁻²) 3 × 10 ¹³ 2–5 × 10 ¹³ 1 × 10 ¹⁴ 0.5–2 × $\text{HCO}^+/N_2\text{H}^+$ 3.5 3–4 3.5 3–4 Results from the chemistry analysis CR ion. rate ζ (s ⁻¹) 6 × 10 ⁻¹² \geq 1.5 × 10 ⁻¹² 4 × 10 ⁻¹⁴ 1.5–8 × 1 =(1000000000000000000000000000000000000	Source size (arcsec)	8	6-15	18	17-26						
N(HCO ⁺) (cm ⁻²) 7×10^{13} $6-15 \times 10^{13}$ 3×10^{14} $2-6 \times 10^{13}$ N(N ₂ H ⁺) (cm ⁻²) 3×10^{13} $2-5 \times 10^{13}$ 1×10^{14} $0.5-2 \times 10^{12}$ HCO ⁺ /N ₂ H ⁺ 3.5 $3-4$ 3.5 $3-4$ Results from the chemistry analysis CR ion. rate ζ (s ⁻¹) 6×10^{-12} $\geq 1.5 \times 10^{-12}$ 4×10^{-14} $1.5-8 \times 10^{-12}$	Source radius (AU) 1600		1250-3000	3700	3500-5000						
$\frac{N(N_2H^+) (cm^{-2})}{HCO^+/N_2H^+} = \frac{3 \times 10^{13}}{3.5} = \frac{2-5 \times 10^{13}}{3-4} = \frac{1 \times 10^{14}}{3.5} = \frac{0.5-2 \times 10^{12}}{3-4} = \frac{10^{14}}{3.5} = 1$	N(HCO ⁺) (cm ⁻²)	7×10^{13}	$6-15 \times 10^{13}$	3×10^{14}	$2-6 \times 10^{14}$						
HCO ⁺ /N ₂ H ⁺ 3.5 3-4 3.5 3-4 Results from the chemistry analysis CR ion. rate ζ (s ⁻¹) 6×10^{-12} $≥1.5 \times 10^{-12}$ 4×10^{-14} $1.5 - 8 \times 10^{-12}$ CR ion. rate ζ (s ⁻¹) 0×10^{-12} $≥2 \times 10^{-8}$ 4×10^{-14} $1.5 - 8 \times 10^{-12}$	$N(N_2H^+)$ (cm ⁻²)	3×10^{13}	$2-5 \times 10^{13}$	1×10^{14}	$0.5 - 2 \times 10^{14}$						
Results from the chemistry analysis CR ion. rate ζ (s ⁻¹) $6 \times 10^{-12} \ge 1.5 \times 10^{-12} 4 \times 10^{-14} 1.5 - 8 \times 10^{-10}$	HCO ⁺ /N ₂ H ⁺	3.5	3-4	3.5	3-4						
CR ion. rate ζ (s ⁻¹) $6 \times 10^{-12} \ge 1.5 \times 10^{-12} 4 \times 10^{-14} 1.5 - 8 \times 10^{-10}$		Results from	n the chemistry a	nalysis	Second Souther State						
-(100th) 1-10-7 >2-10-8 (-10-8 +10-	CR ion. rate (s ⁻¹)	6×10^{-12}	≥1.5 × 10 ⁻¹²	4×10^{-14}	$1.5-8 \times 10^{-14}$						
x(HCU') [∞] I X IU [−] ≥2 X IU [−] 6 X IU [−] 4–I0 X	x(HCO ⁺) ^b	1×10^{-7}	≥2 × 10 ⁻⁸	6×10^{-8}	$4-10 \times 10^{-8}$						
$x(N_2H^+)^b$ $3 \times 10^{-8} \ge 6 \times 10^{-9}$ 2×10^{-8} $1-3 \times 10^{-8}$	x(N2H+)b	3×10^{-8}	≥6 × 10 ⁻⁹	2×10^{-8}	$1-3 \times 10^{-8}$						

L1157-B1 : Podio + 2014

Herschel observations of HCO⁺, N₂H⁺ ion species show abundances explain by $\zeta \sim 3 \ 10^{-16} \ s^{-1}$ (continuous line below)

Needs for in-situ acceleration

- Simple energetic arguments (see Padovani +2016)
 - <u>Gravitational luminosity</u> of accretion shocks impinging the stellar surface:

 $L_{grav} = \frac{GMM}{R_{sh}} \sim 3 \times 10^{34} erg/s$ Class 0 low mass protostar

 <u>Background (ISM) Cosmic Ray luminosity</u> impinging the core of a molecular cloud:

$$L_{CR} \sim R_{core}^2 V_a e_{CR} \sim 1.2 \times 10^{29} \text{ erg/s}$$
 $e_{CR} CR$ energy density

 The CR luminosity close to the star is even smaller due to strong ionization losses, hence: a small fraction of L_{grav} is needed in in-situ energetic particles to dominate L_{CR}.

 These EP are necessary explain high ionization fractions (and nonthermal radiation).

Particle acceleration mechanims

- Magnetic reconnection (stellar flares, coronal process).
- Stochastic (re)acceleration (turbulent accretion disk).
- Diffusive shock acceleration (this talk).

See E.Amato's talk (this meeting).

Diffusive shock acceleration (DSA) in YSO

- YSO jets are particular places for DSA
- Shock speeds:
 - 50-150 km/s in Low Mass (LM)-YSO and 100-1000 km/s in High Mass (HM)-YSO (Araudo + 2017, Bosch-Ramon + 2010).
 - 1. <u>Foreshock properties poorly known:</u>
 - Temperature T ~ 10^4 - 10^5 K => shock Mach numbers.
 - Magnetic field B , background density n => shock Alfvénic Mach numbers, radiative losses can be become important.
 - Partially ionized media => strong wave damping through ion-neutral collisions (pepper side of the problem).
 - 2. <u>Geometry matters</u>:
 - EP can escape transversally (contrary to supernova remnants).
- Shocks at the stellar surface are possible sites for DSA.

Modelling in-situ acceleration in (class 0 & I) YSO

Acceleration sites: (Padovani + 2016)

- Accretion enveloppe
- Accretion shocks
- Shock in jet (travelling or recollimation)

P= protostar surface

Conditions for DSA

- 1) Supersonic and super-Alfvénic shocks: V_{sh} >Max(c_s , V_A)
- 2) Ionization/Coulomb losses: $t_{acc} < t_{loss}$
- 3) Condition in partially ionized media (Drury + 1996).
- Region E does not pass this constraint (R < 1)

Two important energies

ion-neutral coupling energy E_{coup}

- E > E_{coup} EP are in resonance with MHD (Alfvén) waves in the coupled ion-neutral regime ⇔ weakly damped
- ii. $E < E_{coup}$ EP are in resonance with Alfvén waves in the decoupled ionneutral regime \Leftrightarrow strongly damped.

Flux-limited energy Edamp

set by balancing EP flux downstream and escaping EP upstream due to ionneutral damping.

R = E_{damp} / E_{coup} ; acceleration can proceed if R > 1, if E_{damp} is in the weakly damped regime.

Models

- Model P: protostar accretion shock
- Jet model S (strong) of fast shock
- Jet model W (weak) of slower shock solutions.

Model	U [km s ⁻¹]	В [G]	<i>n</i> _H [cm ⁻³]	x	<i>T</i> [10 ⁴ K]	r	Emax [GeV]	<i>P</i> _{CR} [10 ⁻²]	r	Pinj [MeV/c]	pmax [GeV/c]
W	40	5 × 10 ⁻⁵	10 ⁵	0.33	1	2.977	0.13	0.88	4.010	0.306	0.505
S	160	10-3	6×10^{5}	0.60	1	3.890	12.9	4.70	4.062	1.146	13.762
Р	260	5	1.9×10^{12}	0.30	94	2.290	11.4	0.03	3.950	2.058	12.306

* all models have low acceleration efficiency η = 10⁻⁵, so EP pressure is << 10% than shock ram pressure.

Maximum energy

Conditions to set E_{max}

- 1) <u>Age limit</u>: $t_{acc}=t_{age} => E_{age}$
- 2) <u>Geometrical limit</u>:
 - i. Upstream D/V_{sh}= $\epsilon R_{sh} \Rightarrow E_{esc,u}$
 - ii. Downstream $t_{acc} = t_{res} = R_t^2/D \Rightarrow E_{esc,d}$
- 3) <u>Loss limit</u>: $t_{acc}=t_{loss} => E_{loss}$
- 4) Limit imposed by ion-neutral collisions (see previous slide) => E_{damp}

Spectral energy distribution

Emerging EP (proton) spectrum

Jet propagated + TS spectrum (proton: blue, electron: red)

DG tau bow shock radio spectrum

<u>Data</u>: Lynch + 2013 Ainsworth + 2014

Ionization fraction calculations

L1157-B1

ionization rate calculated from jet propagated CR background CR can not produce such an ionization rate. calculated from model P, with solutions as R⁻¹ pure diffusion or R⁻² free streaming.

But, detailed transport modelling is needed + high angular observations (Rab + 2017, Rodgers-Lee + 2017)

in summary what is needed to calculate acceleration efficiency ?

- 1. Jet temperature T.
- 2. Jet magnetic field strength B.
- 3. Jet density n.
- 4. Jet ionization fraction X.
- 5. Geometry: jet length L_i and width I_i .
- 6. Shock speeds V_{sh} .

... by jet I mean, foreshock quantities

 Usually all a loosely known so observers can greatly help modellers by constraining these numbers ! but this is a difficult task.

Perspectives for high-mass YSO

- Shock speeds are higher there, be up to one order of magnitude.
- If jet density is not too large then synchrotron radiation can dominate over thermal free-free emission.
- If typical foreshock quantities are not strongly different as in LM-YSO then one could expect more efficient particle acceleration.
 - Stronger magnetic field generation at shocks (eg non-resonant streaming instability discussed in the supernova remnant context).
 - > High maximum energies up to TeV (so here a link with high-energy astrophysics in the CTA era, <u>https://www.cta-observatory.org/</u>)
- See A. Araudo's talk in this meeting.

Conclusions

- <u>Observations</u>:
 - Growing number of YSO radio observations showing negative indices synchrotron radiation and particle acceleration in jets (SKA era should provide more quality data)
 - In two objects high ionization fraction levels.
- <u>Modelling</u>:
 - high ionization levels: can not be explained by background CR flux because of strong losses
 in-situ acceleration
 - Main mechanisms: reconnection or shocks (DSA) can be used to explain ionization anomalies.
 - DSA is adapted to explain electron acceleration and radio synchrotron features.
 - High-mass YSO have faster jets and could be sites of TeV particles gamma-ray astronomy (CTA era should provide interesting constraints)
- Prospects:
 - Modellers need help from observers : constraining relevant parameters for shock models.
 - Need also to include CR in accretion/ejection simulations and MRI studies.

Conclusions: dynamics

accretion/ejection is a time dependent process !

- A parallel effort is needed to include EP in HD/MHD (multi fluids) simulations.
 - Simulations of jet launching including ionization profiles.
 - How MRI develops accounting the presence of CRs ?

Thanks for your attention and to the organizers for this nice meeting

Magnetic reconnection

sketch of YSO magnetosphere/inner disk region del Valle + 2011, Feigelson & Montmerle 1999

Magnetic reconnection

- YSO are strong X-ray emitters (Feigelson & Montmerle 1999) => upscaling Sun performaces, GeV particles can be accelerated through flares => source of strong ionization in the proto-stellar disk (Rodgers-Lee + 2017, focussed on Class II, Rab + 2017).
- keV X-ray flares L_x ~10³¹-10³³ erg/s (Favata +2005) consistent with magnetic power released during intense reconnection events (Gouveia dal Pino + 2010).
- Duration and spatial extend \Leftrightarrow stellar corona-inner disk region.
- Magnetic reconnection => local heating, plasma motions and shocks => particle acceleration (del Valle + 2011) up to GeV-TeV range.

del Valle + 2011 SED of a TT star located at 120 pc Non-thermal emission from H80-81 (based on Rodriguez-Kamenetzky +2017, Carrasco-Gonzalez +2010)

Massive YSO IRAS 18162-2048 with M ~10 $\rm M_{\odot}$ at 1.7 kpc

Highly collimated jets (<1° width)

Herbig-Haro objects (Marti + 1993): HH80, HH81, HH80N over ~5.3 pc of extension.

The central source emits thermal radio emission, associated with radiative shocks moving away at high speeds (up to 1000 km/s)

Non-thermal emission from H80-81 (based on Rodriguez-Kamenetzky +2017, Carrasco-Gonzalez +2010, Marti + 1993)

Massive YSO IRAS 18162-2048 with M ~10 M_{\odot} at 1.7 kpc

Highly collimated jets (<1° width)

Herbig-Haro objects (Marti + 1993): HH80, HH81, HH80N over ~5.3 pc of extension.

The central source emits thermal radio emission, associated with radiative shocks moving away at high speeds (up to 1000 km/s)

Several non-thermal knots

