

Science & Technology Facilities Council

Influence of the cosmic ray ionisation rate on complex organic molecules chemistry

David Quénard Post-Doctoral Research Assistant Team: Shaoshan Zeng, Izaskun Jiménez-Serra

COMs are carbon-based compounds with >6 atoms

(Herbst & van Dishoeck 2009)

O-bearing COMs: Glycolaldehyde Dimethyl Ether

N-bearing COMs: Formamide Acetonitrile

COMs are carbon-based compounds with >6 atoms

(Herbst & van Dishoeck 2009)

Glycolaldehyde

Simplest member of the monosaccharide sugars

Peptide-like bond Precursor of amino acids? (Saladino et al. 2012)

Formamide

Understand the origin of the molecular complexity in star-forming regions and how far it can go.

Understand the origin of the molecular complexity in star-forming regions and how far it can go.

The Galactic Centre: G+0.693-0.027

Located at ~8 kpc in the Central Molecular Zone

n_H = [3 - 4] x 10⁴ cm⁻³

 $\zeta = [1 - 10] \times 10^{-15} \text{ s}^{-1}$

→ More details in Zeng et al. (2018) (accepted in MNRAS)

Image courtesy of S. Zeng

G0693-0.03 - 3mm survey

Chemical modelling in G+0.693-0.027

3-steps chemical modelling

Grid: cosmic ray ionisation rate $\zeta = 1$, 10, 100, 1000 x ζ_{std} (= 1.3x10⁻¹⁷ s⁻¹)

Phase 0

→ Diffuse cloud step with n_H = 100 cm⁻³ and T=20 K.
 → Evolution of the chemistry for a few millions years.
 → Low A_V: no icy mantle formation but gas phase chemistry.

Phase 1

-> Collapse phase to $n_H = [3 - 4] \times 10^4 \text{ cm}^{-3}$ with T=10 K.

Phase 2

→ Warm-up phase to T_{gas} = 70-105-140 K with T_{dust} = 20 K
 → Rich gas-phase chemistry at warm T_{gas}
 → Small impact of grain surface chemistry because of low T_{dust}!

Chemical code

UCLCHEM (Viti et al. 2004; Holdship et al. 2017) -> https://uclchem.github.io/

Gas-phase + dust grain chemical code (372 species; 3514 reactions) → Modelling of the chemistry in G+0.693-0.027

UCLCHEM (Viti et al. 2004; Holdship et al. 2017) -> https://uclchem.github.io/

Gas-phase + dust grain chemical code (372 species; 3514 reactions) → Modelling of the chemistry in G+0.693-0.027

Recently proposed gas-phase/grain-surface reactions for CH₃NCO (+ isomers)

Quénard et al., (2018)

 $\begin{array}{c} {\rm Methyl\ Isocyanate\ -\ CH_3NCO}\\ {\rm HNCO+CH_3\longrightarrow CH_3NCO+H} & {\rm Halfen\ et\ al.\ (2015)} \end{array}$

 $\label{eq:horizontal_states} \begin{array}{ll} \# CH_3 + \# OCN \longrightarrow \# CH_3 NCO & \mbox{Bell} \\ \# CH_3 + \# HNCO \longrightarrow \# CH_3 NCO + \# H \\ \# CH_3 + \# HNCO \longrightarrow \# CH_4 + \# OCN \\ \# CH_3 NCO + \# H \longrightarrow \# CH_3 NH + \# CO \end{array} \ \ \ I$

= grain surface

Belloche et al. (2017); Ligterink et al. (2017) Ligterink et al. (2017) Ligterink et al. (2017) Ligterink et al., private communication

New theoretical calculations from Majumdar et al. (2018)

	α	eta	γ
\rightarrow CH ₃ NCO + H	1.00×10^{-10}	0	8.04×10^3
$\rightarrow CH_3NCOH^+ + H_2$	1.00×10^{-9}	-0.5	0
$\rightarrow CH_3NCOH^+ + CO$	1.09×10^{-9}	-0.5	0
$\rightarrow CH_3NCO^+ + H$	1.00×10^{-9}	-0.5	0
$\rightarrow CH_3NCO^+ + CO$	1.00×10^{-9}	-0.5	0
$\rightarrow \mathrm{CH}_3\mathrm{NCO}^+ + \mathrm{He}$	1.00×10^{-9}	-0.5	0
$\rightarrow CH_3 + OCN$	1.50×10^{-7}	-0.5	0
\rightarrow CH ₃ NCO + H	3.00×10^{-7}	-0.5	0
\rightarrow CH ₃ + OCN	4.00×10^{3}	0	0
$\rightarrow CH_3 + OCN$	5.00×10^{-10}	0.0	0
\rightarrow s-HCNCO	1	0	0
\rightarrow s-H ₂ CNCO	1	0	2.40×10^{3}
\rightarrow s-CH ₃ NCO	1	0	0
\rightarrow s-CH ₃ NCO	1	0	8.04×10^{3}
\rightarrow s-CH ₃ NCO	1	0	0
\rightarrow s-CH ₃ NCO + e ⁻	0	0	0
\rightarrow s-CH ₃ NCO	1	0	0
	$\rightarrow CH_3NCO + H$ $\rightarrow CH_3NCOH^+ + H_2$ $\rightarrow CH_3NCOH^+ + CO$ $\rightarrow CH_3NCO^+ + H$ $\rightarrow CH_3NCO^+ + He$ $\rightarrow CH_3NCO^+ + He$ $\rightarrow CH_3 + OCN$ $\rightarrow S-HCNCO$ $\rightarrow s-HCNCO$ $\rightarrow s-H_2CNCO$ $\rightarrow s-CH_3NCO$ $\rightarrow s-CH_3NCO$ $\rightarrow s-CH_3NCO$ $\rightarrow s-CH_3NCO$ $\rightarrow s-CH_3NCO$	$\begin{array}{ccccccccc} & & & & & \\ & \rightarrow \ {\rm CH}_3 {\rm NCO} + {\rm H} & & 1.00 \times 10^{-10} \\ & \rightarrow \ {\rm CH}_3 {\rm NCOH}^+ + {\rm H}_2 & 1.00 \times 10^{-9} \\ & \rightarrow \ {\rm CH}_3 {\rm NCO}^+ + {\rm H} & 1.00 \times 10^{-9} \\ & \rightarrow \ {\rm CH}_3 {\rm NCO}^+ + {\rm CO} & 1.00 \times 10^{-9} \\ & \rightarrow \ {\rm CH}_3 {\rm NCO}^+ + {\rm He} & 1.00 \times 10^{-9} \\ & \rightarrow \ {\rm CH}_3 {\rm NCO}^+ + {\rm He} & 1.00 \times 10^{-7} \\ & \rightarrow \ {\rm CH}_3 + \ {\rm OCN} & 1.50 \times 10^{-7} \\ & \rightarrow \ {\rm CH}_3 + \ {\rm OCN} & 1.50 \times 10^{-7} \\ & \rightarrow \ {\rm CH}_3 + \ {\rm OCN} & 4.00 \times 10^3 \\ & \rightarrow \ {\rm CH}_3 + \ {\rm OCN} & 1 \\ & \rightarrow \ {\rm s-HCN} {\rm CO} & 1 \\ & \rightarrow \ {\rm s-HCN} {\rm CO} & 1 \\ & \rightarrow \ {\rm s-HCN} {\rm CO} & 1 \\ & \rightarrow \ {\rm s-CH}_3 {\rm NCO} & 1 \\ & \rightarrow \ {\rm s$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

New theoretical calculations from Majumdar et al. (2018)

Reaction		α	β	γ
$HNCO + CH_3$	\rightarrow CH ₃ NCO + H	1.00×10^{-10}	0	8.04×10^{3}
$CH_3NCO + H_3^+$	$\rightarrow CH_3NCOH^+ + H_2$	1.00×10^{-9}	-0.5	0
$CH_3NCO + HCO^+$	$\rightarrow CH_3NCOH^+ + CO$	1.09×10^{-9}	-0.5	0
$CH_3NCO + H^+$	$\rightarrow CH_3NCO^+ + H$	1.00×10^{-9}	-0.5	0
$CH_3NCO + CO^+$	$\rightarrow CH_3NCO^+ + CO$	1.00×10^{-9}	-0.5	0
$CH_3NCO + He^+$	$\rightarrow \mathrm{CH}_3\mathrm{NCO}^+ + \mathrm{He}$	1.00×10^{-9}	-0.5	0
$CH_3NCO^+ + e^-$	$\rightarrow CH_3 + OCN$	1.50×10^{-7}	-0.5	0
$CH_3NCOH^+ + e^-$	\rightarrow CH ₃ NCO + H	3.00×10^{-7}	-0.5	0
$CH_3NCO + CRP$	$\rightarrow CH_3 + OCN$	4.00×10^{3}	0	0
$CH_3NCO + Photon$	$\rightarrow CH_3 + OCN$	5.00×10^{-10}	0.0	0
HCN + s-CO	\rightarrow s-HCNCO	1	0	0
s-HCNCO + s -H	\rightarrow s-H ₂ CNCO	1	0	2.40×10^{3}
$s-H_2CNCO + s-H$	\rightarrow s-CH ₃ NCO	1	0	0
$s-CH_3 + s-HNCO$	\rightarrow s-CH ₃ NCO	1	0	8.04×10^{3}
$s-CH_3 + s-OCN$	\rightarrow s-CH ₃ NCO	1	0	0
$s-CH_3 + s-OCN^-$	\rightarrow s-CH ₃ NCO + e ⁻	0	0	0
$s-N + s-CH_3CO$	\rightarrow s-CH ₃ NCO	1	0	0

Higher cosmic-ray ionisation rates efficiently destroys HNCO and CH₃NCO

Higher abundance for x100 than x10 for both molecules!

Full lines: x10 Dashed: x100 Dash-dotted: x1000

Production rate of CH₃NCO higher at x100 than at x10 or x1000

Cosmic-rays can activate the chemistry!

Same conclusions apply for HNCO

Good agreement for CH₃OCN and CH₃CNO and within a factor of 10 for CH₃NCO

Very good agreement for HNCO and its isomers: HOCN, HCNO and HONC

	Reactions	Reference	
	$Formamide - NH_2CHO$		
Calculations	$NH_2 + H_2CO \longrightarrow NH_2CHO + H$	Skouteris et al. (2017)	
Experiments	$\#HNCO + \#H \longrightarrow \#NH_2 + \#CO$	Song & Kästner (2016)	
	$\#HNCO + \#H \longrightarrow \#H_2NCO$	Song & Kästner (2016)	
Guessed	$#H_2NCO + #H \longrightarrow #NH_2CHO$	Song & Kästner (2016)	
	$#H_2NCO + #H \longrightarrow #HNCO + #H_2$	Noble et al. (2016)	
	$\#NH_2 + \#HCO \longrightarrow \#NH_2CHO$	Fedoseev et al. (2016)	
	$\#NH_2 + \#HCO \longrightarrow \#NH_3 + CO$	Fedoseev et al. (2016)	
	$\#NH_2 + \#H_2CO \longrightarrow \#NH_2CHO + \#H$	Fedoseev et al. (2016)	
	$\#NH_2 + \#H_2CO \longrightarrow \#NH_3 + \#HCO$	Fedoseev et al. (2016)	
	$#H_2NCO + #CH_3 \longrightarrow #CH_3CONH_2$	Belloche et al. (2017)	
	$\#NH_2CHO + \#OH \longrightarrow \#H_2NCO + \#H_2O$	Belloche et al. (2017)	
	$\#NH_2CHO + \#CH_2 \longrightarrow \#CH_3CONH_2$	Belloche et al. (2017)	

	Reactions	Reference	
	$Formamide - NH_2CHO$		
Calculations	$NH_2 + H_2CO \longrightarrow NH_2CHO + H$	Skouteris et al. (2017)	
Experiments	$#HM \longrightarrow #H \longrightarrow #NH_2 + #CO$	Song & Kästner (16)	
	$#H \longrightarrow #H_2NCO$	Song & Kästr (r 2,6)	
Guessed	$#H_2 \rightarrow #NH_2 CHO$	Song & Kästner 2016)	
	$#H_2NCO + #H \longrightarrow #HNCO + #H_2$	Noble et al. (2016)	
	$\#NH_2 + \#HCO \longrightarrow \#NH_2CHO$	Fedoseev et al. (2016)	
	$\#NH_2 + \#HCO \longrightarrow \#NH_3 + CO$	Fedoseev et al. (2016)	
	$\#NH_2 + \#H_2CO \longrightarrow \#NH_2CHO + \#H$	Fedoseev et al. (2016)	
	$\#NH_2 + \#H_2CO \longrightarrow \#NH_3 + \#HCO$	Fedoseev et al. (2016)	
	$#H_2NCO + #CH_3 \longrightarrow #CH_3CONH_2$	Belloche et al. (2017)	
	$\#NH_2CHO + \#OH \longrightarrow \#H_2NCO + \#H_2O$	Belloche et al. (2017)	
	$\#NH_2CHO + \#CH_2 \longrightarrow \#CH_3CONH_2$	Belloche et al. (2017)	

Not enough NH₂CHO! How to produce more? CR-induced reactions on grain surface to form NH₂CHO Energetic processing of ices Kanuchová et al. (2016) See Poster 13 by

See Poster 13 by Christopher Shingledecker

Not enough NH₂CHO! How to produce more? CR-induced reactions on grain surface to form NH₂CHO Energetic processing of ices Kanuchová et al. (2016) Low velocity shocks at v~20 km/s?

N-bearing chemistry

Low velocity shocks at v~20 km/s might enhance the gas temperature (up to ~1000 K) No enhancement of NH_2CHO at 300, 600, and 1000 K but slightly better for CH_3NCO

O-bearing chemistry

(IN PROGRESS

O-bearing COMs chemistry strongly influenced by cosmic ray ionisation rate! More sensitive than than N-bearing COMs!

Good agreement for CH_3OCH_3 and $HCOOCH_3$ for $\zeta = 1x \zeta_{std}$

O-bearing chemistry

Good agreement for CH₃CHO and CH₃OH within a factor of 10

Less sensitive to cosmic-ray ionisation rate than bigger O-bearing COMs

Conclusions and perspectives

N-bearing and O-bearing COMs chemistry strongly affected by cosmicray ionisation rate.

N-bearing COMs less sensitive to higher CR rate than O-bearing COMs Higher value of CR rate may lead to higher abundances!

G+0.693-0.027: CH3NCO (+ isomers) and HNCO (+ isomers) abundance OK but not enough NH₂CHO predicted by the models.

> Overall good agreement with observations for N-bearing and O-bearing COMs but for $\zeta = 1x \zeta_{std}$ (= 1.3 x 10⁻¹⁷ s⁻¹) \rightarrow different from observations!

Adding CR-induced reactions on grain surface to mimic energetic processing of ice (Kanuchová et al. 2016) is needed to improve the NH₂CHO abundance predicted by the models.

