The role of cosmic rays and other energetic phenomena in the chemistry of P-bearing molecules in the Galactic Center

Víctor M. Rivilla¹, Izaskun Jiménez-Serra², Shaoshang Zeng², Sergio Martín^{3,4}, Jesús Martín-Pintado⁵, Jairo Armijos-Abendaño, Serena Viti⁷, Rebeca Aladro⁸, Denisse Riquelme⁸, Miguel A. Requena-Torres⁹, David Quénard², Francesco Fontani¹, Maite Beltrán¹

¹ INAF-Osservatorio Astrofisico di Arcetri, Italy; ²Queen Mary University of London, UK; ³ALMA Observatory, Chile; ⁴ESO, Chile; ⁵Centro de Astrobiología, INTA-CSIC, Spain; ⁶Observatorio Astronómico de Quito, Ecuador; ⁷UCL, UK; ⁸MPIR, Germany; ⁹University of Maryland, USA

• Phosphorus (P) is essential for the development of Life due to its central role in biochemical processes.

- The chemistry of P remains poorly understood.
- •We present observations of P-bearing molecules across the Central Molecular Zone (CMZ) in the Galactic Center, whose chemistry is affected by energetic phenomena: cosmic rays, X-rays, UV radiation, and shocks.

T_{dust} < 30 K, too cold for the evaporation of ices.

The Central Molecular Zone (CMZ) of the Galaxy

Dust grain sputtering by widespread low-velocity shocks.

G+0.693-0.03 SgrB2 N SgrB2 M

S+0.24+0.01

M+0.02-0.02 SgrA*(-30",-30") M-0.02-0.07

THE SAMPLE: IRAM 30m observations of PN(2-1) towards 7 regions of the Galactic Center

adiation-dominated GC clouds protostellar shock

 P-bearing molecules are destroyed by intense Cosmic-ray / UV / X-ray radiation.

 Observational results confirmed by new chemical models of P-bearing molecules under energetic phenomena (Jiménez-Serra et al., submitted).

