Gas Ionization and Magnetic Field Coupling in B335 CEA-ICE

Victoria Cabedo (ICS, HWU) A. Maury, J.M. Girart, M. Padovani, P. Hennebelle, M. Houde & Q. Zhang November 10th, 2022

CR in the low-mass star formation process

- Why CRs? \rightarrow Ionization degree
 - Chemistry (ion chemistry, ice chemistry, metal catalysis...)
 - Magnetic field coupling (magnetic braking catastrophe)

CR in the low-mass star formation process

- Why CRs? \rightarrow Ionization degree
 - Chemistry (ion chemistry, ice chemistry, metal catalysis...)
 - Magnetic field coupling (magnetic braking catastrophe)
- Where do they come from?
 - Galactic CRs
 - Local CRs

CR in the low-mass star formation process

- Why CRs? \rightarrow Ionization degree
 - Chemistry (ion chemistry, ice chemistry, metal catalysis...)
 - Magnetic field coupling (magnetic braking catastrophe)
- Where do they come from?
 - Galactic CRs
 - Local CRs
- How do we measure it?
 - <u>https://doi.org/10.1051/0004-6361/202243813</u>

The method

Characterize the level of ionization at small envelope radii

- We followed the method by Caselli+1998:
 - The deuteration fraction, R_D , is related to the ionization fraction, χ_e , by (*Wootten*+1979, *Caselli*+1998):

$$\chi_e = \frac{2.7 \times 10^{-8}}{R_D} - \frac{1.2 \times 10^{-6}}{f_D}$$

>And the CR ionization rate is:

$$\zeta = \left[7.5x10^{-4}\chi_e + \frac{4.6x10^{-10}}{f_D}\right]\chi_e n_{H2}R_H$$

(Maury+, 2018)

Introduction

The Class 0 Protostar B335

- Isolated Bok globule with a Class 0 protostar at 164.5 pc (*Keen, 1983; Watson, 2020*)
 - Harbours a hot corino (Imai+, 2016)
 - W-E CO Outflow (*Hirano+*, 1988&1992)
 - Non-symmetric motions and possible preferential accretion (*Cabedo+*, 2021b)
- Magnetically regulated collapse
 - No disk of more than 10 AU (Yen+, 2015)
 - Polarised dust emission shows organised magnetic field (*Maury*+, 2018)

ALMA Observations Molecular lines

- High angular resolutions observations of molecular lines on B335.
 - Angular resolution = 0.8 2.6 arcsec
 - Spectral resolution ≈ 0.2 km/s.
- Beam matching maps

	DCO+	H ¹³ CO ⁺	¹² CO	N_2D^+	$H^{13}CO^+$	C ¹⁷ O**	cont.
	(J=3-2)	(J=3-2)	(J=2-1)	(J=3-2)	(J=1-0)	(J=1-0)	
Rest. Freq. (GHz)	216.112	260.255	230.538	231.321	86.754	112.359	110
Θ_{LRS}^* (arcsec)	11.3	16.0	10.6	10.6			22.3
Pixel size (arcsec)	0.5	0.5	0.5	0.5	0.25	0.25	0.3
Θ_{mai} (arcsec)	1.5	1.5	1.5	1.5	2.6	2.6	0.8
Θ_{\min} (arcsec)	1.5	1.5	1.5	1.5	2.6	2.6	0.7
P.A. (°)	0	0	0	0	0	0	-61.5
Spectral res. (km s^{-1})	0.2	0.2	0.2	0.2	0.15	0.15	-
rms (mJy beam ⁻¹)	22.37	53.15	143.5	6.00	18.58	10.57	0.065
vel. range (km s^{-1})	7.8 - 8.9	7.5 - 8.9	7.6 - 9.4	7.7 - 8.9	7.4-9.2	4.7-6.5	-
						7.7-9.3	
rms (mJy beam ⁻¹ km s ⁻¹)	11.17	21.28	634.6	5.23	17.17	17.58	-

* Largest recoverable scale, computed as $\Theta_{LRS} = 206265(0.6\lambda/b_{min})$ in arcsec, where λ is the rest wavelength of the line, and b_{min} is the minimum baseline of the configuration, both in m (Asayama et al. 2016).

** The two velocity ranges correspond to the two resolved hyperfine components.

DCO⁺ (3-2)

ALMA Observations Molecular lines

- High angular resolutions observation
 - Angular resolution = 0.8 2.6 arcsec
 - Spectral resolution ≈ 0.2 km/s.
- Beam matching maps
- Spectral maps

~ 900 au

ALMA Observations Molecular lines

- High angular resolutions observ
 - Angular resolution = 0.8 2.6 arc
 - Spectral resolution ≈ 0.2 km/s.
- Beam matching maps
- Spectral maps
- Integrated intensity maps

 $H^{13}CO^+(3-2)$

Red-shifted comp.

500 au

Blue-shifted comp.

7°34′20″

15"

10"

05"

ALMA Observations Molecular lines

- High angular resolutions observ
 - Angular resolution = 0.8 2.6 arcs
 - Spectral resolution ≈ 0.2 km/s.
- Beam matching maps
- Spectral maps
- Integrated intensity maps
- Molecular line profiles modelling
 - *Hfs* fitting (*Estalella*+2017)
 - 2 velocity components
 - Peak velocity, velocity dispersion and intensity maps

-9.08.8 8.6 $v_{peak}(km/s)$ 8.4 8.2 8.0 -7.8 -0.500.450.400.35 $\sigma(km/s)$ 0.30

-0.25

-0.20

-0.15

0.10

Deuteration Fraction R_D

- R_D is the column density ratio, accounting for the abundance ratio of ¹²C to ¹³C ($f_{12/13C} = 43$): $R_D = \frac{1}{f_{12/13C}} \frac{\chi (DCO^+)}{\chi (H^{13}CO^+)}$
- R_D ranges from ~0.25 % to ~2 %

Deuteration fraction (in %), superimposed with dust cont. emission @110 GHz, for emission at -2, 3, 5, 7, 10, 30 and 50σ

Deuteration Fraction *R_D*

- R_D is the column density ratio, accounting for the abundance ratio of ¹²C to ¹³C ($f_{12/13C} = 43$): $R_D = \frac{1}{f_{12/13C}} \frac{\chi (DCO^+)}{\chi (H^{13}CO^+)}$
- R_D ranges from ~0.25 % to ~2 %
- Deuteration decreases towards small scales (0.25% to 3%, *Butner+*, 1995)

\rightarrow Local destruction of deuterated molecules

Deuteration fraction (in %), superimposed with N2D+ (3-2) emission, for -3, 3, 5, 10, 15 and 20σ

Ionization Processes Depletion Factor, f_D

• f_D is the 'expected' CO abundance vs. the 'observed' CO column density, computed as:

$$f_D = \frac{N_{H2} X_{CO}}{N_{C170} f_{C170}}$$

- High depletion values (20-70), highly asymmetric and increasing towards the centre
- High depletion regions coincide with low deuteration regions

-30

Ionization Processes Depletion Factor, f_D

• *f_D* is the 'expected' CO abundance vs. the 'observed' CO column density, computed as:

$$f_D = \frac{N_{H2} X_{CO}}{N_{C170} f_{C170}}$$

- High depletion values (20-70), highly asymmetric and increasing towards the centre
- High depletion regions coincide with low deuteration regions
- Not due to CO freeze-out, T ~ 20-30 K (*Walmsley+1987; Murphy+1998*):
 - CO conversion to CH_3OH and CH_4 (*Aikawa+, 2012*)
 - CO photodissociation by local radiation processes and conversion to HCO⁺ (*Visser*+, 2009)

Ionization Processes Ionization Fraction, χ_e

- Large ionization fraction, $\chi_e = 2x10^{-6}$
- The ionization basically depends on the **level of deuteration**, not the depletion factor

V. Cabedo (ICS, HWU) - Cosmic Rays 2

Ionization Processes CR Ionization Rate, ζ

- ζ mostly depends on χ_e
- ζ increases towards the centre, reaching values of $7x10^{-14} s^{-14}$

CR ionization rate, superimposed with dust cont. emission @110 GHz, for emission at -2, 3, 5, 7, 10, 30 and 50σ

CR ionization rate, superimposed with dust cont. emission @ 110 GHz, for emission at -2, 3, 5, 7, 10, 30 and 50σ

• Not compatible with ionization → Local ionization processes?

Origin of the ionization Local CR acceleration

• No far-UV or X-Ray radiation

Origin of the ionization Local CR acceleration

- No far-UV or X-Ray radiation
- Local CR acceleration can have two origins:
 - **Strong magnetized shocks along the outflow** (*Padovani+*, 2015&2016; *Fitz Axen+*, 2021; *Padovani+*, 2021)
 - Accretion shocks near the protostellar surface (*Padovani+*, 2016; *Gaches+*, 2018)
- B335 hosts a powerful jet (*Galfalk+, 2007; Yen+, 2010*)
- B335 exhibits an organized magnetic field at small scales (*Maury+*, 2018)

Origin of the ionization Ionization trend

- We measure $\zeta(\bar{r}, \vartheta)$, where \bar{r} is the ζ average at different radii, for the different angles, $0 \le \vartheta \le \pi$
- Two power-law profiles $\zeta \propto r^s$:
 - Inner envelope (< 270 AU) s = -0.96Compatible with CR diffusive regime (s = -1)
 - Outer envelope (> 270 AU) s = -3.77

CRs are thermalized? Symmetry is lost?

Caveats of the method

Is this correct?

- The bad:
 - Uncertainties are large:
 - Uncertainties from the data
 - Uncertainties in the parameters: T_{dust} , T_{ex} , dust opacity...
 - Is there chemical equilibrium?
- The good:
 - Relation between ζ and R_D is better if ionization is high *(Shingledecker+,2016; Bron+,2021)*
 - H_3^+ methods underestimate ζ , except where CR ionization dominates (*Gaches+*, 2019)
 - Models including protostellar sources predict such CRIR (*Gaches+,2018; Gaches+,2019*)
 - Corrections are important at $R_D > 10\%$ (*Bovino+*, 2020)

The implications Ionization and B field coupling

- The ionization fraction of the gas determines:
 - The coupling between the gas and the B field
 - The role of diffusive processes, such as ambipolar diffusion
- The large ionization in B335 should lead to an almost perfect coupling, producing strong magnetic braking
 - This supports previous observations on B335 (Yen+, 2015; Maury+, 2018)
- Change from non-ideal MHD to ideal MHD conditions during the first stages of protostellar formation
 - Disk properties might be determined by local ionization conditions (Kuffmeier+, 2020)

Conclusions

- Derivation of χ_e and ζ maps at small scales (< 1000 AU) in the Class 0 protostar B335
 - Values of χ_e are larger than typically measured in protostars ($\chi_e = 1 \sim 7x10^{-6}$)
 - Maps suggest very high values of ζ and increasing towards the centre
 →Local production of CRs
 - Efficient coupling between the gas and the B field leading towards a an important magnetic braking
- More observations at larger angular resolution and of a larger sample of protostars are needed to confirm the results:

Astrocatalysis @ ICS, HWU

In Operando Studies of Catalysis and Photocatalysis of Space Abundant Transition Metals

• 4 years project: HWU (Edinburgh) + UAB (Barcelona) + FHI (Berlin)

Our 'Astro Miller-Urrey' Experiment:

- 1. Replicating interstellar dust metallic inclusions (*Cabedo+*, 2021a; <u>https://doi.org/10.1051/0004-6361/202039991</u>)
- 2. Thermal and photo-induced chemistry on catalytic systems at different astrophysical conditions during the SFP
 - Including S and P chemistry!!
- 3. Parallel chemical modelisation of the observed reactions

Many thanks!

Other questions: v.cabedo@hw.ac.uk

V. Cabedo (ICS, HWU) - Cosmic Rays 2