## **COSMIC RAYS 2**

The salt of the star formation recipe



#### Florence, 8-10 November 2022

# The effect of cosmic rays on carbon isotopic fractionation

#### Laura Colzi

(Centro de Astrobiología, CSIC-INTA) 9<sup>th</sup> November 2022

Olli Sipilä, Evelyne Roueff, Paola Caselli and Francesco Fontani



AEI Retos project PID2019-105552RB-C41

#### Isotopic ratios as stellar nucleosynthesis tracers



#### Isotopic ratios as stellar nucleosynthesis tracers



Galactic chemical evolution models (e.g. Romano et al. 2017, 2019, Colzi et al. 2022b)

#### $^{12}C \rightarrow \underline{Primary production}$ in all stars.

<sup>13</sup>C → <u>Primary production</u> from massive fast rotators at low metallicities, <u>Secondary production</u> at high metallicity in all stars In both cases nova contribution on long timescales.

### $^{12}C/^{13}C$ as a function of D<sub>GC</sub>



 ${}^{12}CN/{}^{13}CN = (6.0 \pm 1.2) D_{GC}(kpc) + (12.3 \pm 9.3)$  ${}^{12}CO/{}^{13}CO = (5.4 \pm 1.1) D_{GC}(kpc) + (19.0 \pm 7.9)$  $H_2{}^{12}CO/H_2{}^{13}CO = (7.6 \pm 1.8) D_{GC}(kpc) + (18.0 \pm 10.8)$ 

 $^{12}C/^{13}C = (6.2 \pm 1.0) D_{GC}(kpc) + (18.7 \pm 7.4)$ 

Sun distance 7.9 kpc (Hunt et al. 2016 and Boehle et al. 2016)  $\rightarrow local {}^{12}C/{}^{3}C=68\pm15$ 

CN: Milam et al. (2005), Savage et al. (2002), CO: Langer& Penzias (1990, 1993), Keene et al. (1998), and Wouterloot & Brand (1996), H<sub>2</sub>CO: Henkel et al. (1980, 1982, 1983, 1985), Gardner & Whiteoak (1979), and Gusten et al. (1985). <u>See also Yan et al. (2019).</u>

#### <sup>14</sup>N/<sup>15</sup>N of nitriles derived with the double-isotope method





And many more.... Adande et al. (2012) Hily-Blant et al. (2013) Wampfler et al. (2014) Zeng et al. (2017)

•••

ASSUMED FROM THE GALACTOCENTRIC DEPENDENCE  

$${}^{12}C/{}^{13}C = (6.01 \pm 1.19) D_{gc}(kpc) + (12.28 \pm 9.33)$$
  
*Milam et al.* (2005)  
 ${}^{12}C/{}^{13}C = (5.08 \pm 1.10) D_{gc}(kpc) + (11.86 \pm 6.60)$   
*Yan et al.* (2019)

#### <sup>14</sup>N/<sup>15</sup>N of nitriles derived with the double-isotope method





And many more.... Adande et al. (2012) Hily-Blant et al. (2013) Wampfler et al. (2014) Zeng et al. (2017)

→ ASSUMED FROM THE GALACTOCENTRIC DEPENDENCE  ${}^{12}C/{}^{13}C = (6.01 \pm 1.19) D_{gc}(kpc) + (12.28 \pm 9.33)$  *Milam et al.* (2005)  ${}^{12}C/{}^{13}C = (5.08 \pm 1.10) D_{gc}(kpc) + (11.86 \pm 6.60)$ *Yan et al.* (2019)

→ LOCAL CHEMICAL FRACTIONATION EFFECTS CAN ALSO BE IMPORTANT



Magalhães et al. (2018) towards the pre-stellar core L1498 measured HCN/H<sup>13</sup>CN= 45±3



All values different than the local ISM value of 68



Magalhães et al. (2018) towards the pre-stellar core L1498 measured HCN/H<sup>13</sup>CN=  $45\pm3$ 



All values different than the local ISM value of 68 AN INDEPENDENT DETERMINATION OF C-FRACTIONA IS NEEDED

From Loison+2020

| species                                                             | ratio    | Cloud | references                                 |
|---------------------------------------------------------------------|----------|-------|--------------------------------------------|
| C <sup>18</sup> O/ <sup>13</sup> C <sup>18</sup> O                  | 70(20)   | L1527 | (Yoshida et al. 2019)                      |
| C <sup>17</sup> O/ <sup>13</sup> C <sup>17</sup> O                  | 42(13)   | L483  | (Agúndez et al. 2019)                      |
| HCO <sup>+</sup> /H <sup>13</sup> CO <sup>+</sup>                   | 49(14)   | TMC1  | (Turner 2001)                              |
| CCH/ <sup>13</sup> CCH                                              | > 250    | TMC1  | (Sakai <i>et al.</i> 2010)                 |
|                                                                     | > 250    | TMC1  | (Liszt & Ziurys 2012)                      |
|                                                                     | 210(60)  | L1527 | (Yoshida et al. 2019)                      |
|                                                                     | >162     | L483  | (Agúndez et al. 2019)                      |
| CCH/C <sup>13</sup> CH                                              | >170     | TMC1  | (Sakai et al. 2010)                        |
|                                                                     | >170     | TMC1  | (Liszt & Ziurys 2012)                      |
|                                                                     | 140(40)  | L1527 | (Yoshida et al. 2019)                      |
|                                                                     | >70      | L483  | (Agúndez et al. 2019)                      |
| c-C <sub>3</sub> H <sub>2</sub> /c-CC <sup>13</sup> CH <sub>2</sub> | 61(11)   | L1527 | (Yoshida et al. 2015)                      |
|                                                                     | 41(8)    | L1527 | (Yoshida et al. 2015, Yoshida et al. 2019) |
|                                                                     | 53(16)   | L483  | (Agúndez et al. 2019)                      |
| c-C <sub>3</sub> H <sub>2</sub> /c- <sup>13</sup> CCCH <sub>2</sub> | 310(80)  | L1527 | (Yoshida et al. 2015)                      |
|                                                                     | 200(30)  | L1527 | (Yoshida et al. 2019)                      |
|                                                                     | 458(138) | L483  | (Agúndez et al. 2019)                      |



From Loison+2020

| species                                                             | ratio    | Cloud | references                                 |
|---------------------------------------------------------------------|----------|-------|--------------------------------------------|
| C <sup>18</sup> O/ <sup>13</sup> C <sup>18</sup> O                  | 70(20)   | L1527 | (Yoshida et al. 2019)                      |
| C <sup>17</sup> O/ <sup>13</sup> C <sup>17</sup> O                  | 42(13)   | L483  | (Agúndez et al. 2019)                      |
| HCO <sup>+</sup> /H <sup>13</sup> CO <sup>+</sup>                   | 49(14)   | TMC1  | (Turner 2001)                              |
| CCH/ <sup>13</sup> CCH                                              | > 250    | TMC1  | (Sakai <i>et al.</i> 2010)                 |
|                                                                     | > 250    | TMC1  | (Liszt & Ziurys 2012)                      |
|                                                                     | 210(60)  | L1527 | (Yoshida et al. 2019)                      |
|                                                                     | >162     | L483  | (Agúndez et al. 2019)                      |
| CCH/C <sup>13</sup> CH                                              | >170     | TMC1  | (Sakai et al. 2010)                        |
|                                                                     | >170     | TMC1  | (Liszt & Ziurys 2012)                      |
|                                                                     | 140(40)  | L1527 | (Yoshida et al. 2019)                      |
|                                                                     | >70      | L483  | (Agúndez et al. 2019)                      |
| c-C <sub>3</sub> H <sub>2</sub> /c-CC <sup>13</sup> CH <sub>2</sub> | 61(11)   | L1527 | (Yoshida et al. 2015)                      |
|                                                                     | 41(8)    | L1527 | (Yoshida et al. 2015, Yoshida et al. 2019) |
|                                                                     | 53(16)   | L483  | (Agúndez et al. 2019)                      |
| c-C <sub>3</sub> H <sub>2</sub> /c- <sup>13</sup> CCCH <sub>2</sub> | 310(80)  | L1527 | (Yoshida et al. 2015)                      |
|                                                                     | 200(30)  | L1527 | (Yoshida et al. 2019)                      |
|                                                                     | 458(138) | L483  | (Agúndez et al. 2019)                      |

Dependence on the position of the  $^{13}C$ 

### Low-temperature isotopic exchange reactions

 $^{13}C + ^{12}CO \rightarrow ^{13}CO + ^{12}C^+ + 34.7 \text{ K}$ 

Watson et al. (1976); Langer et al. (1984)

 $HCO^{+} + {}^{13}CO \longrightarrow H^{13}CO^{+} + {}^{12}CO + 17.4 \text{ K}$ 

Langer et al. (1978); Smith and Adams (1980); Mladenovic and Roueff (2014)

### Low-temperature isotopic exchange reactions

 $^{13}C + ^{12}CO \rightarrow ^{13}CO + ^{12}C^{+} + 34.7 \text{ K}$ 

Watson et al. (1976); Langer et al. (1984)

 $HCO^{+} + {}^{13}CO \longrightarrow H^{13}CO^{+} + {}^{12}CO + 17.4 \text{ K}$ 

Langer et al. (1978); Smith and Adams (1980); Mladenovic and Roueff (2014)

Note: typical temperatures for low- and high-mass starless cores could be between 5 and 20 K (Crapsi+2007; Fontani+2011)

### Low-temperature isotopic exchange reactions

Roueff et al. (2015) – gas-phase + simulated depletion of molecules varying initial abundances

| Reaction                                                                                                                                                                     | ⊿Е<br>(К)    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $^{13}C^+ + CO \rightleftharpoons ^{12}C^+ + ^{13}CO$                                                                                                                        | 34.7         |
| $^{13}\text{CO} + \text{HCO}^+ \rightleftharpoons \text{CO} + \text{H}^{13}\text{CO}^+$<br>$^{13}\text{C}^+ + \text{CN} \rightleftharpoons ^{12}\text{C}^+ + ^{13}\text{CN}$ | 17.4<br>31.1 |
| $^{13}C + CN \rightleftharpoons ^{12}C + ^{13}CN$<br>$^{13}C + C_2 \rightleftharpoons ^{12}C + ^{13}CC$                                                                      | 31.1<br>25.9 |

Watson et al. (1976); Langer et al. (1984)

Langer et al. (1978); Smith and Adams (1980); Mladenovic and Roueff (2014)

Roueff et al. (2015)

Roueff et al. (2015) - gas-phase + simulated depletion of molecules varying initial abundancesT=10 KStarless core model  $n_H = 2 \times 10^4$  cm<sup>-3</sup>Pre-stellar core model  $n_H = 2 \times 10^5$  cm<sup>-3</sup>



Colzi et al. (2020)

gas-grain chemical model starting from KIDA network (Wakelam et al. 2015)

[For more information about the chemical code and type of reactions see Sipilä et al. (2015a, 2019b)]

Colzi et al. (2020)

**gas-grain chemical model starting from KIDA network** (Wakelam et al. 2015) [For more information about the chemical code and type of reactions see Sipilä et al. (2015a, 2019b)]

| Η | + | $ccn \rightarrow$                | С             | + H(            | CN | Branch             | ing Ratio=1 |
|---|---|----------------------------------|---------------|-----------------|----|--------------------|-------------|
| Н | + | C <sup>13</sup> CN               | $\rightarrow$ | С               | +  | H <sup>13</sup> CN | BR=1/2      |
| Н | + | C <sup>13</sup> CN               | $\rightarrow$ | <sup>13</sup> C | +  | HCN                | BR=1/2      |
| Н | + | <sup>13</sup> C <sup>13</sup> CN | $\rightarrow$ | <sup>13</sup> C | +  | H <sup>13</sup> CN | BR=1        |



Colzi et al. (2020)

gas-grain chemical model starting from KIDA network (Wakelam et al. 2015)

[For more information about the chemical code and type of reactions see Sipilä et al. (2015a, 2019b)]

| Η | + | $ccn \rightarrow$                | C             | + H(            | CN | Branch             | ing Ratio=1 |
|---|---|----------------------------------|---------------|-----------------|----|--------------------|-------------|
| Н | + | C <sup>13</sup> CN               | $\rightarrow$ | С               | +  | H <sup>13</sup> CN | BR=1/2      |
| Н | + | C <sup>13</sup> CN               | $\rightarrow$ | <sup>13</sup> C | ÷  | HCN                | BR=1/2      |
| Η | + | <sup>13</sup> C <sup>13</sup> CN | $\rightarrow$ | <sup>13</sup> C | +  | H <sup>13</sup> CN | BR=1        |

 $\rightarrow$  Molecules with up 5 atoms  $\rightarrow$  Inclusion of <sup>13</sup>C in molecules with up to three carbon atoms

 $H^{13}C_3N$  YES  $^{13}C_3^{12}C$  NO

Colzi et al. (2020)

gas-grain chemical model starting from KIDA network (Wakelam et al. 2015)

[For more information about the chemical code and type of reactions see Sipilä et al. (2015a, 2019b)]

| Η | + | $ccn \rightarrow$                | С             | + H(            | CN | Branch             | ing Ratio=1 |
|---|---|----------------------------------|---------------|-----------------|----|--------------------|-------------|
| Н | + | C <sup>13</sup> CN               | $\rightarrow$ | С               | +  | H <sup>13</sup> CN | BR=1/2      |
| Η | + | C <sup>13</sup> CN               | $\rightarrow$ | <sup>13</sup> C | +  | HCN                | BR=1/2      |
| Η | + | <sup>13</sup> C <sup>13</sup> CN | $\rightarrow$ | <sup>13</sup> C | +  | H <sup>13</sup> CN | BR=1        |

→We do not take into account the different possible position of the <sup>13</sup>C (Loison+2020; Sipilä, Colzi et al. in prep.) <sup>13</sup>CCN=C<sup>13</sup>CN TOTAL of 11500 chemical reactions

#### <u>NEW</u> low-temperature isotopic exchange reactions

Reaction  $^{13}C^+ + CO \rightleftharpoons ^{12}C^+ + ^{13}CO$ 34.7  $^{13}\text{CO} + \text{HCO}^+ \rightleftharpoons \text{CO} + \text{H}^{13}\text{CO}^+$  17.4  $^{13}C^+ + CN \Longrightarrow ^{12}C^+ + ^{13}CN$ OLD REACTIONS FROM 31.1 ROUEFF ET AL. (2015)  $^{13}C + CN \rightleftharpoons ^{12}C + ^{13}CN$ 31.1  $^{13}\text{C} + \text{C}_2 \rightleftharpoons ^{12}\text{C} + ^{13}\text{CC}$ 25.9  $^{13}C^+ + C_2 \rightleftharpoons ^{12}C^+ + ^{13}CC$ 25.9  ${}^{13}C^+ + {}^{13}CC \rightleftharpoons {}^{12}C^+ + {}^{13}C_2$ 26.4  $^{13}C + ^{13}CC \rightleftharpoons ^{12}C + ^{13}C_2$ 26.4 **NEW REACTIONS**  $^{13}C^+ + CS \rightleftharpoons ^{12}C^+ + ^{13}CS$ 26.3 **FROM THIS WORK**  $^{13}\text{C} + \text{C}_3 \rightleftharpoons ^{12}\text{C} + ^{13}\text{CC}_2$ 27  $^{13}C^+ + C_3 \rightleftharpoons ^{12}C^+ + ^{13}CC_2$ 27

Laura Colzi

#### The Fiducial Model

PHYSICAL PARAMETERS:

 $\zeta = 1.3 \times 10^{-17} \text{ s}^{-1}$  cosmic-ray ionization rate  $A_V = 10 \text{ mag visual extinction}$   $T_{gas} = T_{dust} = 10 \text{ K}$  $n_H = 2 \times 10^4 \text{ cm}^{-3}$ 

Initial  ${}^{12}C^{+}/{}^{13}C^{+}=68$  (local ISM) and gas in atomic form except H<sub>2</sub>

| Species         | Initial abundance      |
|-----------------|------------------------|
| H <sub>2</sub>  | 0.5                    |
| He              | $9.00 \times 10^{-2}$  |
| $C^+$           | $1.20 \times 10^{-4}$  |
| $^{13}C^{+}$    | $1.76 \times 10^{-6}$  |
| Ν               | $7.60 \times 10^{-5}$  |
| 0               | $2.56 \times 10^{-4}$  |
| S <sup>+</sup>  | $8.00 \times 10^{-8}$  |
| Si <sup>+</sup> | $8.00 \times 10^{-9}$  |
| Na <sup>+</sup> | $2.00 \times 10^{-9}$  |
| $Mg^+$          | $7.00 \times 10^{-9}$  |
| Fe <sup>+</sup> | $3.00 \times 10^{-9}$  |
| $\mathbf{P}^+$  | $2.00 \times 10^{-10}$ |
| $\mathrm{Cl}^+$ | $1.00 \times 10^{-9}$  |
| F               | $2.00 \times 10^{-9}$  |

Semenov et al. (2010)

#### The Fiducial Model



#### The Fiducial Model



 $^{13}C^+ + ^{12}CO \longrightarrow ^{13}CO + ^{12}C^+ + 35 K$ 

#### $^{13}C^+ + ^{12}CN \longrightarrow ^{13}CN + ^{12}C^+ + 31 K$

#### Laura Colzi

#### The Fiducial Model



 $HCO^+ + {}^{13}CO \longrightarrow H{}^{13}CO^+ + {}^{12}CO + {}^{17}CO^+ CO^+$  and  $HCO^+$  are the main reservoirs of  ${}^{13}C$  at 10 K

Laura Colzi

Reference: Colzi, L., et al., 2020, accepted by A&A, arXiv:2006.03362

#### The Fiducial Model



#### Range of time in which <sup>12</sup>C/<sup>13</sup>C ratios decrease

Laura Colzi

### The importance of $C_3$ isotopic exchange reaction



$$t = 3 \times 10^4 \text{ yr} < t_1 = 1.6 \times 10^5 \text{ yr}$$

$$^{13}C + C_3 \rightarrow ^{12}C + ^{13}CC_2 + 27 \text{ K}$$

#### Laura Colzi

### The importance of $C_3$ isotopic exchange reaction



### The importance of $C_3$ isotopic exchange reaction



### The effect of cosmic rays in our model

In gas-phase:

 $\rightarrow$  Wakelam+2015 (KIDA) and Heays+(2017)

DIRECT COSMIC-RAY IONIZATION REACTIONS 
$$k_{\rm CR} = \gamma_2 \zeta$$
  $\zeta = {\rm cosmic-ray ionisation rate}$ 

### The effect of cosmic rays in our model



UV

### The effect of cosmic rays in our model





#### Laura Colzi



For long timescales: C<sub>3</sub> isotopic-exchange reaction still important: C<sub>3</sub> not efficiently destroyed, atomic <sup>12</sup>C abundance descrease and <u>atomic <sup>12</sup>C/<sup>13</sup>C decreases</u>

Laura Colzi



secondary-photon reactions not efficient  $\rightarrow$  decrease of overall <sup>12</sup>C/<sup>13</sup>C ratios

#### Laura Colzi



For long timescales: similar to the standard case BUT secondary-photon reactions more efficient  $\rightarrow$  high atomic C abundance  $\rightarrow$  C<sub>3</sub> isotopic-exchange reaction efficient  $\rightarrow$  atomic <sup>12</sup>C/<sup>13</sup>C high

Laura Colzi





Secondary-photon reactions very efficient  $\rightarrow$  increase of overall <sup>12</sup>C/<sup>13</sup>C ratios

#### Laura Colzi



#### ANALYSED TIMES:

 $t_1$  = early-time chemistry 2 ×  $t_1$ 10 ×  $t_1$ 



 $t_1 = early-time chemistry$ 2 ×  $t_1$ 10 ×  $t_1$ 



Reference: Colzi, L., et al., 2020, A&A, 640, A51

HNC



Laura Colzi

HNC

<sup>12</sup>C/<sup>13</sup>C higher for higher cosmic-ray ionisation rate



HCN



CN



CN



#### IF THE <sup>12</sup>C/<sup>13</sup>C RATIO CAN BE DIRECTLY EVALUATED → ESTIMATE OF THE COSMIC-RAY IONIZATION RATE



PREDICTED VALUES  $\zeta = 1.3 \times 10^{-16} \text{ s}^{-1}$ HNC/HN<sup>13</sup>C = [120-350]

 $HCN/H^{13}CN = [100-350]$ 







Average <sup>14</sup>N/<sup>15</sup>N ratio derived for HCN and HNC (Colzi et al. 2018a,b)  $\rightarrow \frac{14}{15}N = \left(\frac{330}{68}\right) \times \left[100-350\right] = 1$ 

> Assumed <sup>12</sup>C/<sup>13</sup>C from Galactocentric trend



Average <sup>14</sup>N/<sup>15</sup>N ratio derived for  
HCN and HNC (Colzi et al. 2018a,b)  
$${}^{14}N/{}^{15}N = (\frac{330}{68}) \times [100-350] = [490 - 1700]$$
  
Assumed <sup>12</sup>C/<sup>13</sup>C from

Galactocentric trend



Average <sup>14</sup>N/<sup>15</sup>N ratio derived for HCN and HNC (Colzi et al. 2018a,b)

$$|^{4}N/|^{5}N = \left(\frac{330}{68}\right) \times \left[|00-350\right] = \left[490 - |700\right]$$

Assumed <sup>12</sup>C/<sup>13</sup>C from Galactocentric trend Higher than those typically found in molecular clouds/ /star-forming regions



#### → IMPORTANT TO KNOW THE EXACT <sup>12</sup>C/<sup>13</sup>C RATIO IF THE DOUBLE-ISOTOPE METHOD IS USED!

### CONCLUSIONS

We developed a **new chemical network** to study in detail how important are **isotopic** exchange reactions for carbon fractionation

★ We suggested a possible exchange between <sup>13</sup>C and C<sub>3</sub>
 → important for T < 30 K</li>
 → leads to <sup>12</sup>C/<sup>13</sup>C < 68 for the fiducial model</li>
 \*Loison+2020 found similar results.

Reference: Colzi, L., et al., 2020, A&A, 640, A51. For application to the extragalactic ISM see Viti, S. et al. (2020)

### CONCLUSIONS

We developed a **new chemical network** to study in detail how important are **isotopic** exchange reactions for carbon fractionation

\* We suggested a possible exchange between  $^{13}C$  and  $C_3$ 

→ important for T < 30 K → leads to  $^{12}C/^{13}C$  < 68 for the fiducial model

\*Loison+2020 found similar results.

 $\star$  <sup>12</sup>C/<sup>13</sup>C ratios of nitriles are higher for  $\zeta = 1.3 \times 10^{-16}$  s<sup>-1</sup>

→ C-fractionation can be used to estimate the ζ
 → Independent estimates of the <sup>12</sup>C/<sup>13</sup>C ratio are important when the double-isotope method is used to study N-fractionation

Reference: Colzi, L., et al., 2020, A&A, 640, A51. For application to the extragalactic ISM see Viti, S. et al. (2020)

### CONCLUSIONS

We developed a **new chemical network** to study in detail how important are **isotopic** exchange reactions for carbon fractionation

 $\bigstar$  We suggested a possible exchange between <sup>13</sup>C and C<sub>3</sub>

→ important for T < 30 K → leads to  $^{12}C/^{13}C$  < 68 for the fiducial model

\*Loison+2020 found similar results.



#### $\star$ <sup>12</sup>C/<sup>13</sup>C ratios of nitriles are higher for $\zeta = 1.3 \times 10^{-16}$ s<sup>-1</sup>

→ C-fractionation can be used to estimate the ζ
 → Independent estimates of the <sup>12</sup>C/<sup>13</sup>C ratio are important when the double-isotope method is used to study N-fractionation

Reference: Colzi, L., et al., 2020, A&A, 640, A51. For application to the extragalactic ISM see Viti, S. et al. (2020)

## **COSMIC RAYS 2**

The salt of the star formation recipe



#### Florence, 8-10 November 2022

# The effect of cosmic rays on carbon isotopic fractionation

#### Laura Colzi

(Centro de Astrobiología, CSIC-INTA) 9<sup>th</sup> November 2022

Olli Sipilä, Evelyne Roueff, Paola Caselli and Francesco Fontani



AEI Retos project PID2019-105552RB-C41