Investigating the cosmic-ray ionization rate in diffuse atomic clouds

Arshia Maria Jacob

Johns Hopkins University, Baltimore, USA ajacob51@jhu.edu

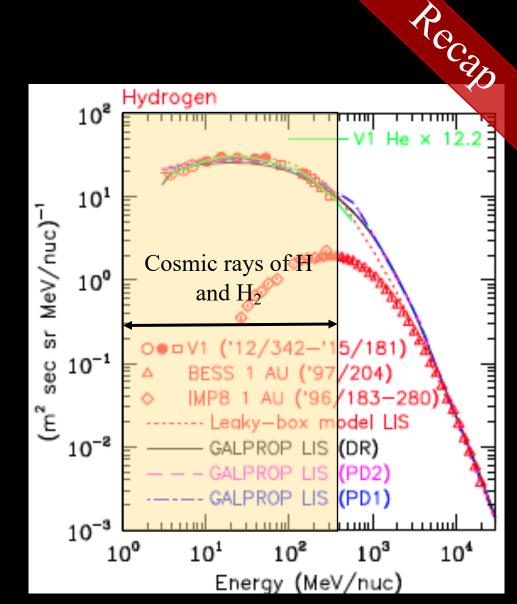
Collaborators: David Neufeld, Mark Wolfire, Nick Indriolo, HyGAL Team

COSMIC RAYS 2: The salt of star formation recipe ★ November 9, 2022 ★

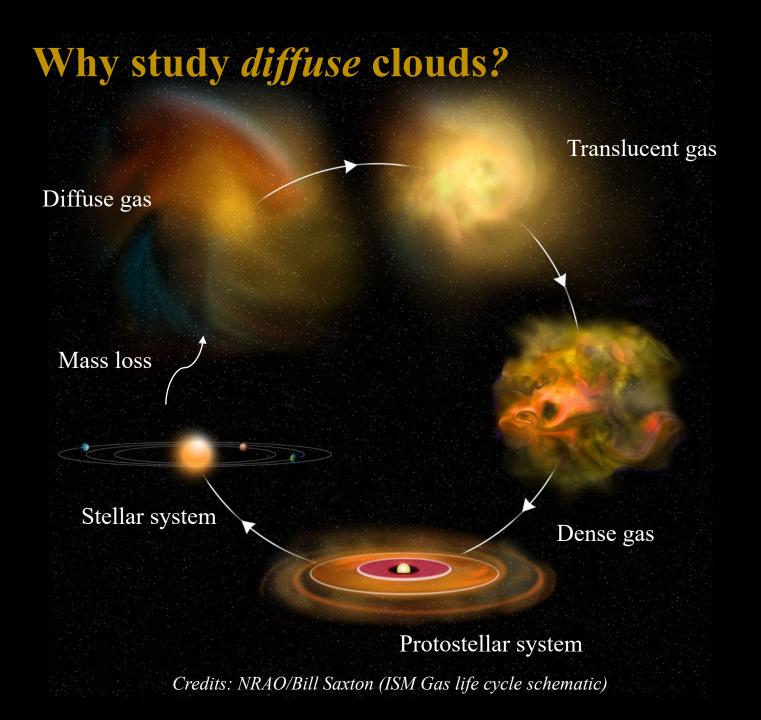
Background Image: The Spitzer IRAC-MIPS mosaic of the W49 star-formation region. The colour composite shows the 3.6µm, 8µm and 24µm emissions in blue, green and red, respectively.

Low-energy cosmic-rays

What is their importance?


- Important source of heating and ionization in the ISM
- Drives interstellar chemistry in diffuse and dense regions
- Produces diffuse γ -ray flux via π^0 decay and light elements via spallation

Why study them?


- Low energy (< 1 GeV) particle flux is poorly constrained!
- Uncertainties in the results from Voyager

How do we study them?

• Using molecular line observations

Cosmic ray energy distribution spectrum. Taken from Cummings et al. 2016.

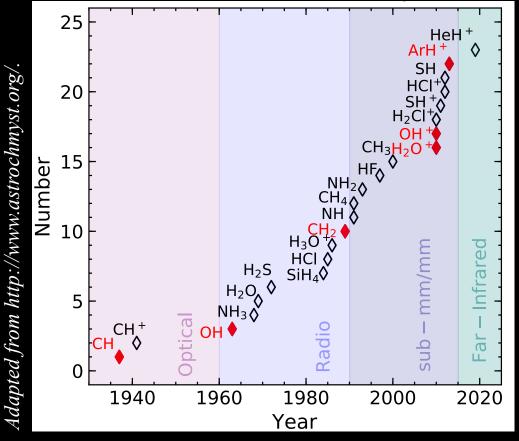
- Essential for cloud formation
- Initiating chemical growth

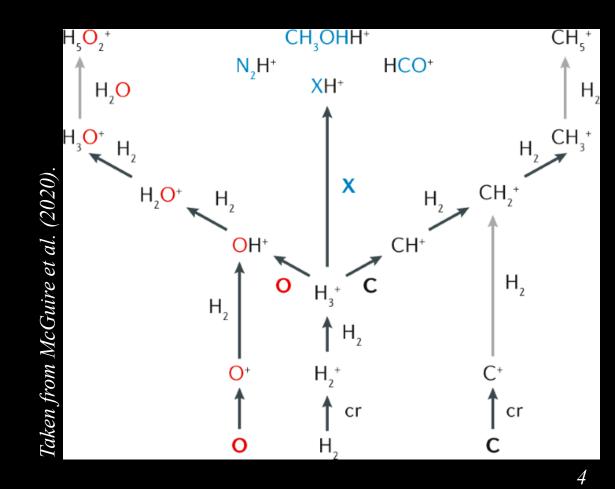

Cosmic-ray ionization rate inferred from *observations* of the local ISM

(Discussed in David Neufeld's talk yesterday)

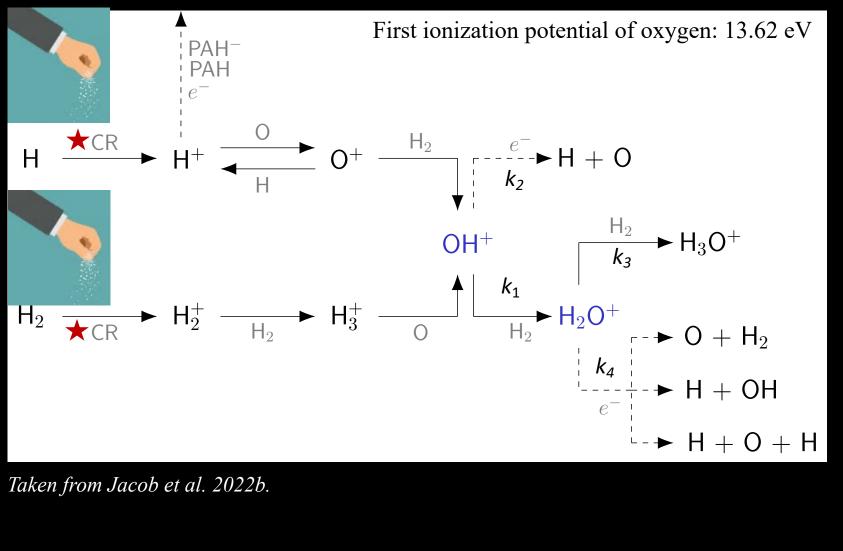
Taken from Snow & McCall 2008

Table 1 Classification of Interstellar Cloud Types


	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^n{}_{H_2} > 0.1 \ f^n{}_{C^+} > 0.5$	$f^{n}{}_{C^{+}} < 0.5 \ f^{n}{}_{CO} < 0.9$	$f^n_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5–10
Typ. $n_{\rm H}$ (cm ⁻³)	10–100	100–500	500-5000?	>10 ⁴
Тур. Т (К)	30–100	30–100	15-50?	10–50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

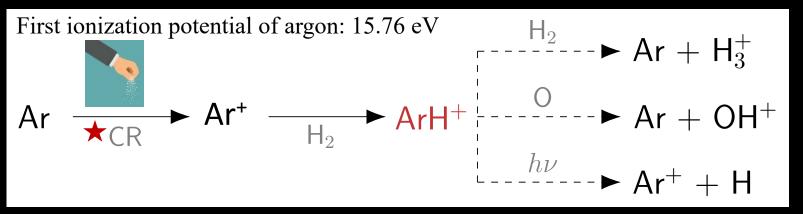

Measuring the cosmic-ray ionization rate in *diffuse atomic* **gas with** *hydride ions*

- $(X)H_n$ and $(X)H_n^+$: Reservoir for heavy elements
- First molecules detected in space


(Dunham 1937; Swings & Rosenfeld 1937)

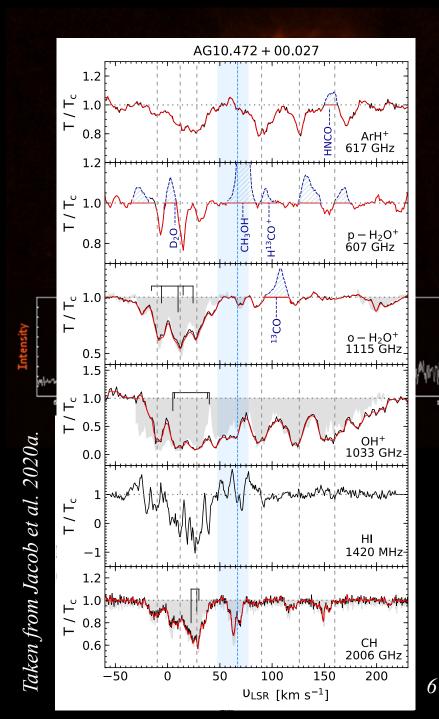
- Fundamental building blocks of interstellar chemistry
- Hydrides shape the FIR-radio window

Closer look at Oxygen chemistry

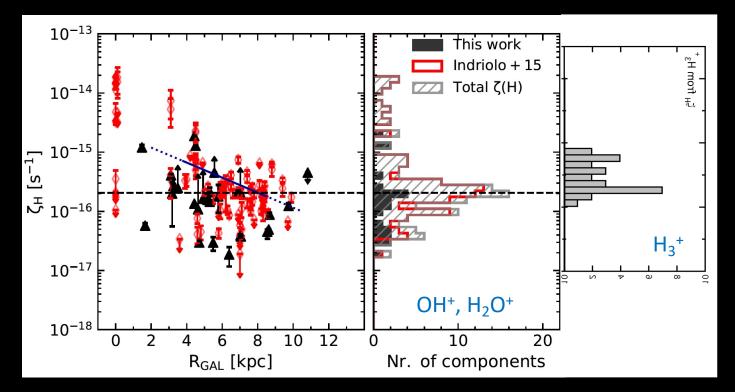

Taken from Jacob et al. 2022b.

- First detected in the ISM via its \bullet rotational transitions at 909 GHz in absorption by Wyrowski et al. 2010.
- Constraints the cosmic-ray ulletionization rate and molecular fraction.

$$\epsilon \zeta_p = \frac{N(OH^+)}{N(H_2O^+)} n_{\rm H} \left[\frac{f_{\rm H2}}{2} k_1 + x_{\rm e} k_2 \right]$$
$$f_{\rm H_2} = \frac{(2x_e k_4/k_1)}{(\frac{N(OH^+)}{N(H_2O^+)} - \frac{k_3}{k_1})}$$


(Neufeld et al 2010)

Closer look at Argon chemistry



Taken from Jacob et al. 2022b.

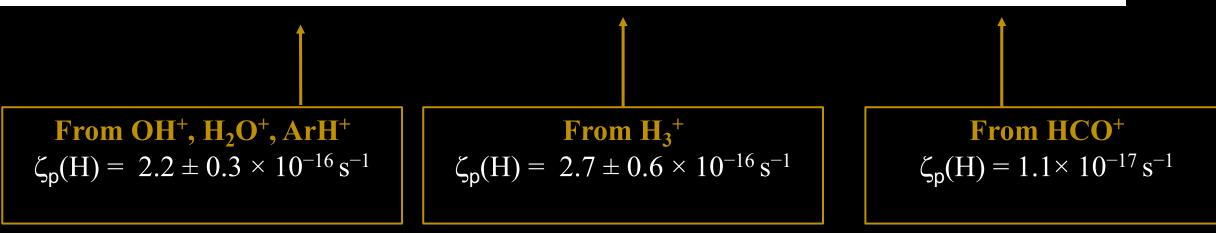
- Serendipitous discovery in the Crab Nebula (Barlow et al. 2013)
- Identified in ubiquitous absorption at 617.525 GHz (*Schilke et al. 2014*)
- Survival \rightarrow low molecular fractions ($f_{\rm H2} \sim 10^{-3}$)
- Absorption spectroscopy \rightarrow robust measurements of column density

Herschel survey of Galactic OH⁺ and H₂O⁺

- Cosmic-ray ionization rate of atomic H toward specific velocity components is derived by balancing the steady state chemistry.
- Average ionization rate, $\zeta_p = (2.2 \pm 0.3) \times 10^{-16} \text{ s}^{-1}$
- In good agreement with values derived using $H_3^+ \bigstar$

Adapted from Indriolo et al. 2015 and Jacob et al. 2020.

Chemical models by *Neufeld & Wolfire (2017)* suggest that the cosmic ray ionization rates in diffuse molecular clouds marginally decrease with cloud extinction for $A_v \ge 0.5$.


Cosmic-ray ionization rate inferred from *observations* of the local ISM

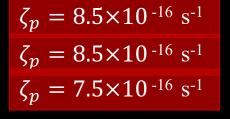
(Discussed in David Neufeld's talk yesterday)

Taken from Snow & McCall 2008

Table 1 Classification of Interstellar Cloud Types

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^{n}{}_{H_2} > 0.1 \ f^{n}{}_{C^+} > 0.5$	$f^{n}{}_{C^{+}} < 0.5 \ f^{n}{}_{CO} < 0.9$	$f^n_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5–10
Typ. $n_{\rm H}$ (cm ⁻³)	10–100	100–500	500-5000?	>10 ⁴
Тур. Т (К)	30–100	30–100	15-50?	10–50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

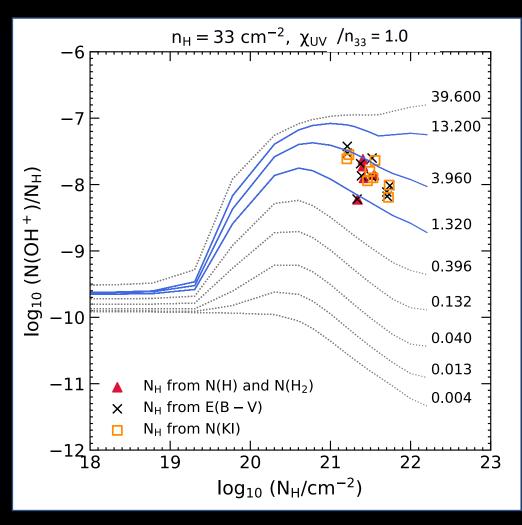
9


Other OH⁺ measurements-*EDIBLES*

(ESO Diffuse Interstellar bands large exploration survey)

- UV absorption line measurements toward 10 nearby stars (*Bacalla et al. 2019*) via the (0,0) and (1,0) $A^3\Pi X^3\Sigma^-$ electronic bands of OH⁺ near 3583 Angstrom
- Derived the cosmic ray ionization rate using $N_{\rm H}$ estimated from:
- 1. Direct measurements of N(H) and $N(H_2)$ (available in 5 stars)
- 2. E(B-V) (available in 10 stars)
- 3. N(KI) (available in 8 stars)

Inconsistent with the ζ_p derived using sub-mm OH⁺ measurements


Bacalla et al. 2019 assumed a fixed molecular fraction!

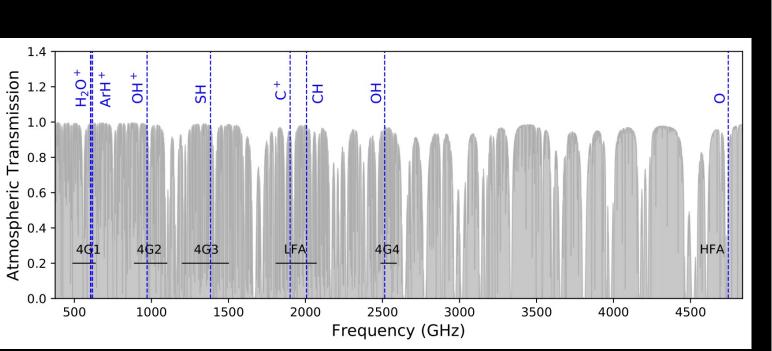
Resolving ζ_p derived from different transitions of OH⁺

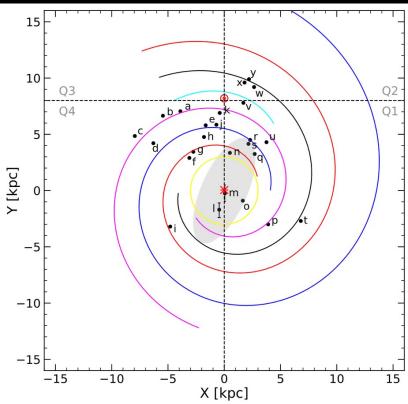
• Using the updated 1-D slab models presented in Neufeld & Wolfire 2017

(discussed yesterday in David Neufeld's talk)

New
$$\zeta_p = (2.5 \pm 1.5) \times 10^{-16} \text{ s}^{-1}$$

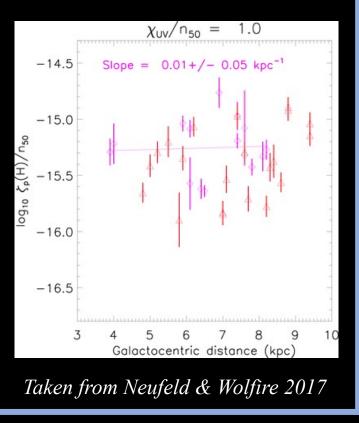
Cosmic ray ionization rates derived from UV and sub-mm OH⁺ observations are perfectly consistent!

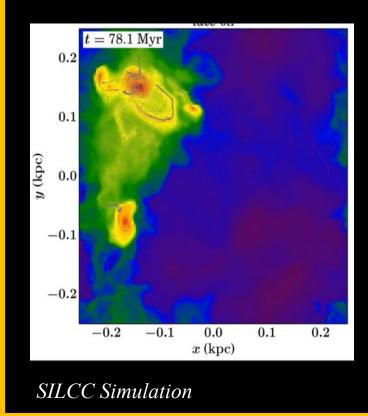

The *future** of OH⁺ observations



Characterizing the Galactic ISM with observations of hydrides (ArH⁺, H₂O⁺, OH⁺, SH, CH, OH) and other small molecules

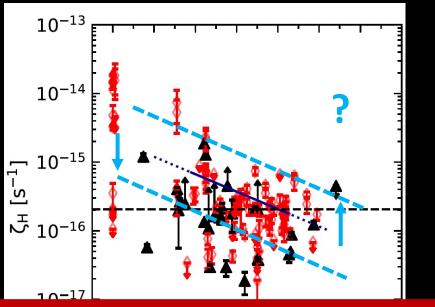
- High resolution spectroscopic observations using upGREAT and 4GREAT
- With three tunings to disentangle any sideband contamination
- 25 Galactic sightlines



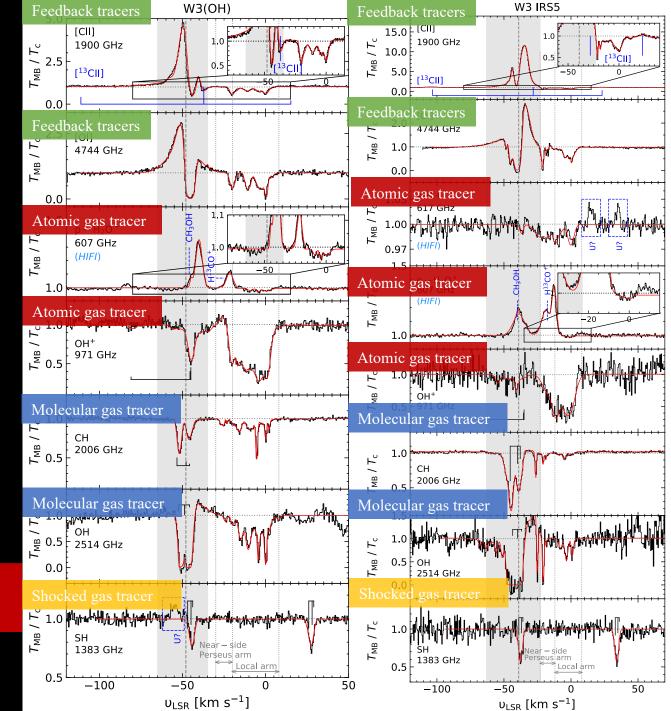

Goal

To understand how molecular clouds are formed and the processes that lead to the transition from atomic to molecular gas

- Distribution of \bullet molecular fraction in different ISM phases 10^{-5} $X(ArH^+)$ (OH +) 10^{-6} $X(0 - H_2O^+)$ 10^{-7} X(CH) Abundances 10^{-8} 10^{-9} 10^{-10} 10^{-11} 10^{-12} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10⁰ f_{H_2} Taken from Jacob et al. (2020b)
- Variation of comic-ray ionization across Galactocentric distances



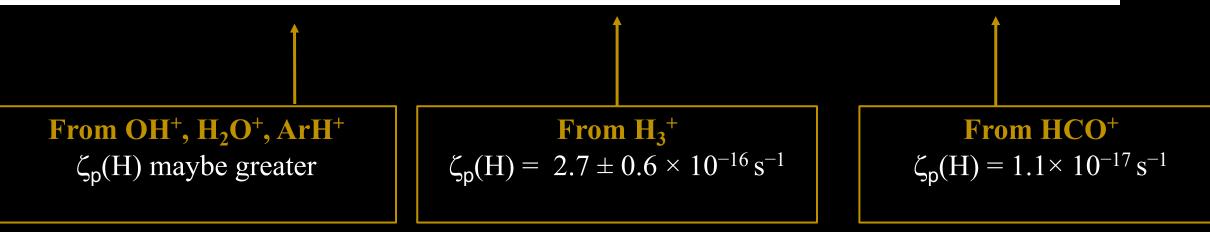
• Nature of turbulence in the ISM and its dissipation


The *future* of OH⁺ observations

- HyGAL adds more data points
- New measurements of rotationally cold OH⁺ dissociative recombination rate (CSR, Heidelberg; Kalosi et al. in prep)

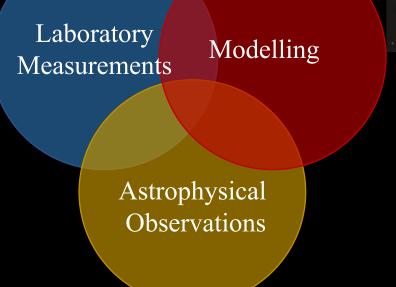
→ will lead to revised estimates of the CR ionization rate in diffuse atomic clouds

, 0 2 4 6 8 10 12 R_{GAL} [kpc]


Cosmic-ray ionization rate inferred from *observations* of the local ISM

(Discussed in David Neufeld's talk yesterday)

Taken from Snow & McCall 2008


Table 1 Classification of Interstellar Cloud Types

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^n{}_{H_2} > 0.1 \ f^n{}_{C^+} > 0.5$	$f^{n}{}_{C^{+}} < 0.5 \ f^{n}{}_{CO} < 0.9$	$f^n_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5–10
Typ. $n_{\rm H}$ (cm ⁻³)	10–100	100–500	500-5000?	>10 ⁴
Тур. Т (К)	30–100	30–100	15-50?	10–50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

Summary

- Hydride ions like OH+, H₂O⁺ and ArH⁺ are excellent tracers of the cosmic-ray ionization rate in diffuse atomic gas
- Resolved inconsistencies between $\zeta_p(H)$ derived from UV and sub-mm OH⁺ transitions
- New constraints from HyGAL observations
 + new measurements of the OH⁺ dissociative recombination

Thank you!