ALESSANDRO LUPI

Università degli Studi di Milano Bicocca

The impact of cosmic rays on the ortho-to-para ratio of H2 in starforming filaments

Cosmic Rays 2: the salt of the star-formation recipe

in collaboration with:

S. Bovino and T. Grassi

Florence (Italy)

Introduction

Star formation commonly occurs in molecular clouds, dense and cold regions forming out of the interstellar medium of galaxies

Credit: NASA

While a general agreement has been reached on the typical properties of MCs

$$\mathcal{M} \gg 1, n_{\rm H_{tot}} \gtrsim 100 \,{\rm cm}^{-3}, T \ll 100 \,{\rm K}, \alpha_{\rm vir} \sim 1-2$$

no clear consensus exists about the initial chemical conditions in filaments and cores.

In particular, the evolution of the ortho- and para- states of H₂ has crucial implications on the deuteration process, which affects the reliability of chemical clocks based on deuterated species (see, e.g. Bovino, Ferrada-Chamorro, Lupi et al. 2019, Bovino, Lupi, et al. 2021).

Theoretical modelling for molecular clouds

Standard approach:

- Isothermal equation of state (or strongly simplified analytic cooling function)
- Chemical modelling in post-processing, with no feedback on the gas dynamics (see Ferrada-Chamorro et al. 2021 for a discussion)
- Constant CRIR

Self-consistent approach:

- Non-equilibrium chemistry on-the-fly (for every resolution element, at each time-step), including at least 37 species (Grassi et al. 2017):
 H, H⁺, He, He⁺, He⁺⁺, H₂, H⁺₂, H⁻, C⁺, C, O⁺, O, OH, HOC⁺, HCO⁺, CO, CH, CH₂, C₂, HCO, H₂O, O₂, H⁺₃, CH⁺, CH⁺₂, CO⁺, CH⁺₃, OH⁺, H₂O⁺, H₃O⁺, O⁺₂, C⁻, O⁻, e⁻, plus G, G⁻, G⁺ (neutral and charged grains) => (more than 350 reactions, including CR-induced ones)
- Radiative cooling fully-dependent on the thermodynamic and chemical state of the gas, accounting for dust cooling, metal line cooling (CI, CII, OI), CO rotational cooling, chemical cooling and heating, H₂ roto-vibrational cooling, Compton cooling, continuum cooling, photoheating, **CR-induced heating**, photoelectric heating.

Cosmic Rays 2 (Florence)

Modelling the H₂ ortho- and para- evolution

We need isomer-dependent chemistry (Sipilä et al, 2015, Bovino et al. 2019). In particular:

- H_2 formation (H⁻ and on dust grains), with initial OPR = 3
- H_2 ortho-to-para and para-to-ortho conversion in gas phase (collisions with H^+ and H_3^+)
- H₂ dissociation by stellar radiation (Draine flux plus shielding)

And possibly:

• H₂ ortho-to-para and para-to-ortho conversion on dust (Furuya et al. 2019), expected to further accelerate the decrease in OPR.

$$\begin{split} k_{\rm op} &= k_{\rm ads}^{\rm oH_2} \eta_{\rm op}, \\ k_{\rm po} &= k_{\rm ads}^{\rm pH_2} \eta_{\rm po}, \end{split} \qquad \begin{aligned} \eta_{\rm op} &= \frac{t_{\rm des}}{t_{\rm des} + \tau_{\rm conv}} \frac{1}{1 + \gamma}, \\ \eta_{\rm po} &= \frac{t_{\rm des}}{t_{\rm des} + \tau_{\rm conv}} \frac{\gamma}{1 + \gamma}, \end{aligned}$$

$$\tau_{\rm conv} = 6.3 \times 10^4 T_{\rm dust}^{-1.9} \,\text{s}$$
$$\gamma = 9 \exp(-170.5/T_{\rm dust})$$

 $\tau_{\rm des}$ is the effective desorption time-scale (thermally-driven) Given the typically low value of $T_{\rm dust}$, $\gamma \approx 0$ (Bovino et al. 2017).

Where do CRs enter here?

Cosmic Rays 2 (Florence)

Modelling the H₂ ortho- and para- evolution

We need isomer-dependent chemistry (Sipilä et al, 2015, Bovino et al. 2019). In particular:

- H_2 formation (H⁻ and on dust grains), with initial OPR = 3
- H_2 ortho-to-para and para-to-ortho conversion in gas phase (collisions with H^+ and H_3^+)
- H_2 dissociation by stellar radiation (Draine flux plus shielding)

And possibly:

• H₂ ortho-to-para and para-to-ortho conversion on dust (Furuya et al. 2019), expected to further accelerate the decrease in OPR.

$$\tau_{\rm conv} = 6.3 \times 10^4 T_{\rm dust}^{-1.9} \,\text{s}$$
$$\gamma = 9 \exp(-170.5/T_{\rm dust})$$

 $\tau_{\rm des}$ is the effective desorption time-scale (thermally-driven)

Given the typically low value of T_{dust} , $\gamma \approx 0$ (Bovino et al. 2017).

Where do CRs enter here?

Cosmic Rays 2 (Florence)

Modelling the H₂ ortho- and para- evolution

CR-induced reactions are typically modelled assuming a constant ionisation rate, and exploring different values.

However, CRs are attenuated as they penetrate deeper into MCs and filaments, and a selfconsistent modelling should account for this attenuation (see David Neufeld's talk).

In Lupi, Bovino & Grassi (2021), we considered an approximate model with a column density-dependent CRIR (Padovani et al. 2018):

$$\zeta_{\mathrm{H}_2} = \zeta_{\mathrm{H}_2,\mathrm{p}} + \zeta_{\mathrm{H}_2,\mathrm{e}},$$

$$\zeta_{\rm H_{2},p} = \begin{cases} 6.8 \times 10^{-16} N_{20}^{-0.423} & N_{\rm eff} < 10^{25} \rm cm^{-2} \\ 5.4 \times 10^{-18} \exp(-\Sigma_{\rm eff}/38) & \text{otherwise} \end{cases}$$

$$\zeta_{\rm H_{2},e} = \begin{cases} 1.4 \times 10^{-19} N_{20}^{-0.04} & N_{\rm eff} < 10^{25} \rm cm^{-2} \\ 3.3 \times 10^{-20} \exp(-\Sigma_{\rm eff}/71) & \text{otherwise} \end{cases}$$

$$N_{20} = N_{\rm eff} / (10^{20} \,\rm cm^{-2})$$
$$\Sigma_{\rm eff} = 2.36 m_{\rm H} N_{\rm eff} \,\rm g \,\rm cm^{-2}$$
$$N_{\rm eff} \approx 1.87 \times 10^{21} (\frac{n_{\rm H_2}}{10^3})^{2/3} \,\rm cm^{-2}$$

Cosmic Rays 2 (Florence)

Towards a self-consistent model of the OPR evolution

(Lupi, Bovino, and Grassi 2021)

Modelling:

- MHD + Gravity (GIZMO; Hopkins 2015, 2016): intrinsic adaptivity and almost exact conservation of energy and angular momentum (as in SPH codes), excellent shock capturing and fluid mixing (as in grid codes)
- Non-equilibrium chemistry and radiative cooling (KROME, Grassi et al. 2014): reduced CO network suitable for MC studies including ortho and para H₂ states
- Supersonic turbulence: turbulence driving at large scales, triggering the formation of filaments (Federrath et al. 2010, Bauer & Springel 2012)

Initial conditions:

- 200 pc homogeneous box with $n_{\rm H} = 5 \,{\rm cm}^{-3}$ and T = 5000 K (a patch of warm neutral medium filled with gas and dust), corresponding to a total mass $M_{\rm cloud} \sim 1.3 \times 10^6 \,{\rm M}_{\odot}$.
- High mass $(m_{gas} = 0.2 \text{ M}_{\odot})$ and spatial (adaptive softening down to $\varepsilon = 60 \text{ AU}$) resolution, to ensure that filaments can be resolved
- Initially constant magnetic field along the x axis $B_x = 3\mu G$

Cosmic Rays 2 (Florence)

Towards a self-consistent modelling of the OPR

(Lupi, Bovino, and Grassi 2021)

• Isothermal relaxation (50 Myr) to allow turbulence to fully develop

 Inclusion of self-gravity and chemistry for about 5 Myr

• Proto-filament analysis: dendrograms with minimum $N_{\rm H_2} = 10^{21} \, {\rm cm}^{-2}$

Cosmic Rays 2 (Florence)

Towards a self-consistent modelling of the OPR

November 8th, 2022

Cosmic Rays 2 (Florence)

The impact of CR modelling

The impact of CR modelling

The impact of CR modelling

Cosmic Rays 2 (Florence)

Conclusions

We performed state-of-the-art 3D MHD simulations of molecular cloud formation, including on-the-fly non-equilibrium chemistry with self-consistent modelling of ortho- and para- H₂.

We also considered an effective model for CR attenuation, instead of a constant CRIR commonly employed.

- The H₂ OPR is mainly a function of gas density, not being significantly affected by time evolution
- The H₂ OPR reaches very low values (<< 0.01) already at moderate densities ($n_{\rm H_{tot}} \gtrsim 10^3 \, {\rm cm}^{-3}$) typical of proto-filaments, and a more physically motivated CRIR model helps reducing the OPR below 0.1 already around $n_{\rm H_{tot}} \sim 10^2 \, {\rm cm}^{-3}$
- The CRIR in proto-filaments must be high to match observations of diffuse clouds, consistently with observationally-inferred values
- Ortho-to-para and para-to-ortho conversion on dust grains has a moderate effect, and only at high densities

What next?

- Increasing resolution to probe higher column densities and start resolving fragmentation in filaments
- Adding a more physically motivated turbulence driving via supernovae (e.g. Padoan et al. 2016) and non-ideal MHD
- Adding stellar feedback during the proto-stellar and main sequence phase (radiation, jets, winds)

Cosmic Rays 2 (Florence)