Impact of Cosmic-Ray Feedback on Protostellar Disks

Stella Offner

The University of Texas at Austin

Nov 8 2022

Why care about Cosmic Rays in Star & Planet Formation?

Padovani et al. 2020, ISSI Review

Why care about Cosmic Rays in Star & Planet Formation?

Cosmic-rays are not just produced by supernova shocks...

Image credit: NASA / CXC / RIKEN / NASA's Goddard Space Flight Center / T. Sato et al / DSS.

Protostars: Forges of Cosmic Rays

Accretion shocks and jets can accelerate CRs (Padovani et al. 2015, 2016)

First-Order Fermi Accereration or Diffusive Shock Acceleration

Melrose 2009

CRs are coming from inside the house (molecular clouds)!

Observational Evidence: Jets

Non-thermal Synchrotron Emission is Observed in Protostellar Jets

Ainsworth ea 2014

Podio ea 2014

Rodriguez-Kamenetzky ea 2017

Observations Evidence: Protostars

OMC2-FIR4: Is a forming massive star with M*~10Msun

Favre et al. 2018 (c-C₃H₂)

Gaches & Offner 2018b, 2022

Also: Ceccarelli ea 2014 (HCO+, N₂H+), Fontani ea 2017 (HC₃N, HC₅N)

CRs Impact Disk Chemistry!

Galactic CRs are screened by stellar magnetic field (Cleeves ea 2013a)

CRs Impact Disk Chemistry!

Galactic CRs are screened by stellar magnetic field (Cleeves ea 2013a)

... but not ones accelerated locally.

CRs Impact Disk Chemistry!

Galactic CRs are screened by stellar magnetic field (Cleeves ea 2013a)

... but not ones accelerated locally.

Also: Ivlev et al. 2016, Rodgers-Lee ea 2017, Rab et al. 2017ab, Padovani et al. 2018

Protostars: Forges of Cosmic Rays

- CRs accelerated at the shock by accretion shocks for different stellar masses.
- CR are low-energy: E < 20 GeV
- Iow-energy CRs are primary cause of ionization

Model Parameters:

- Loss Function (Padovani ea 2016)
- B field
- Shock velocity
- Temperature
- Ionization fraction
- Accretion rate

Gaches & Offner 2018b

CR Spectrum & Ionization Rate At Disk Surface

Calculate attenuation of CR between the acceleration site and disk:

Fiducial Model

CRs Impact Disk Chemistry

s_

Rate

- Analytic model for disk density and temperature
- Attenuate ionization rate following Padovani ea 2018:

Padovani ea 2018, Padovani ea 2020, ISSI Review

Offner et al. 2019

CRs Mediate Disk Accretion

- CRs dominate ionization at disk mid plane, esp. <10au
- Impact depends on accretion rate, CR attenuation, B field coupling
- CRs shape disk chemistry

Offner et al. 2019

-og Column Density (g cm⁻²)

CRs Mediate Disk Accretion

 Estimate the MRI given the magnetic reynolds number (Re) and Ambipolar diffusion number (Am):

$$Am \equiv \frac{n_{\rm charge}\beta_{\rm in}}{\Omega}, \qquad Re \equiv \frac{c_s h}{D} \simeq 1 \left(\frac{x_e}{10^{-13}}\right) \left(\frac{T}{100 {\rm K}}\right)^{1/2} \left(\frac{a}{{\rm AU}}\right)^{3/2},$$

Offner et al. 2019 with 2022 update

CRs Mediate Disk Accretion

- MRI is active but not too active...
- Fiducial case (mdot = 10⁻⁷ Msun/yr) MRI inactive at mid-plane in agreement with observations (e.g., Flaherty et al. 2017)

Offner et al. 2019 with 2022 update

Dust Details Matter

- MRI-active region is mostly independent of chemical network and time
- MRI region is larger for larger dust

Offner et al. 2019

Transport and CR-B Field Coupling Matters

• MRI-active region increases for higher accretion (a little), diffusive attenuation $(\zeta \propto r^{-1})$ and low B-field coupling.

Offner et al. 2019

What about ionization in the rest of the gas (outside the disk)?

CR Transport through Turbulent Dense Cores (Fitz-Axen ea 2021b)

MC-CRT Method

- 1. Initialize particles with spectrum, random directions at source (protostar)
- 2. Propagate Δx along field line according to scattering length, where χ in [0,1] (Freyer ea 2007):

 $\Delta x = -\ln(\chi)\lambda_{\rm sc}.$

$$A_{\rm sc} = c(\gamma\beta)^{2-q} f(\beta_A) \frac{8}{\pi(q-1)\sigma^2 c k_{\min}} \left(\frac{ck_{\min}}{\Omega}\right)^{2-q}.$$

 $f(\beta_A)$ = function of Alfven velocity q=5/3 index of turbulent power spectrum kmin = minimum wavenumber of mag. field σ = magnitude of mag.field fluctuation

3. Apply energy losses

 $L(E) = \frac{1}{n(H_2)} \frac{dE}{dx} = \frac{1}{n(H_2)v} \frac{dE}{dt},$

4. Calculate new direction, random number χ in [0,1] $\sigma^2 = (\frac{1}{b} - 1)^2, \ b = B_0/B_{tot}$ where $B_{tot} = B_0 + \delta B$ $\chi > b \rightarrow$ sample randomly, $\chi < b \rightarrow$ follow field B_0

Code results compared to analytic solution for diffusion (always sample direction randomly) and free-streaming propagation (no direction changes); no losses

Fitz-Axen ea 2021a

CR ionization above ISM rate in the inner core

- CR ionization is highly non-uniform (see also Fraschetti ea 2018)
- CR ionization highest in the outflow by x 3-10 (density lower + magnetic collimation)
- CRs may leak out outflow cavity in a 'flashlight' effect Fitz-Axen ea 2021b

- CRs attenuate geometrically + loose energy while passing through denser core gas
- CRs flux remains high though the outflow cavity

Fitz-Axen ea 2021b

Parameters Matter

- Depends on acceleration model, e.g.: $\dot{m} = 10^{-7} - 10^{-5} \text{ M}_{\odot} \text{ yr}^{-1}$ $\eta = 10^{-6} - 10^{-4}$ (Shock acceleration efficiency)
- Depends on assumed random (turbulent) field component:

Some
 Turbulence
 (Partial diffusion)

Fitz-Axen ea 2021b

Observed Non-Uniform CR Ionization?

 See talk by Jaime Pineda (tomorrow) for map of spatial distribution of CR ionization rate

Pineda et al. in prep

What about the impact of CRs on galaxy scales?

"The CR ionization and gamma-ray budgets of star-forming galaxies" Krumholz, Crocker & Offner sub (see arXiv tomorrow)

 Use energy arguments, consider all sources of CR acceleration (SN, winds, jets/accretion, HII regions ...)

$$\xi = 10^{-16} \left(\frac{t_{\text{dep}}}{\text{Gyr}}\right)^{-1} s^{-1} \to 2 - 5 \times 10^{-17} s^{-1}$$

2-5 times lower than molecular obs. (e.g., Indriolo ea 2015), consistent with Voyager
What if non-SNe CR feedback is local?

 $\xi_{\rm mc} = (0.75 + 0.47/f_{\rm mc}) \times 10^{-16} (t_{\rm dep}/{\rm Gyr})^{-1} s^{-1}$

 $\rightarrow 1.7 - 5.5 \times 10^{-16} \mathrm{s}^{-1}$

Conclusions

- ★ Low-Energy CRs are accelerated "locally" in protostellar shocks and jets.
- ★ These CRs play a significant role in disk ionization and chemistry.
- ★ CR feedback dominates disk ionization rate <10 au for T Tauri disks; enhances region of active MRI.</p>
- ★ Ionization in cores heterogeneous; locally accelerated CRs may leak out via outflow cavity.
- ★ Mean CR ionization in the MW is lower than the mean in molecular clouds due to SF CR feedback.