Surveying cosmic ray production in molecular clouds A low-frequency radio survey of Perseus and Taurus

Simon Purser, 09:40 - 10:00, Wednesday 9th November 2022

YSOs, Jets, and Radio Emission

Jets

Feedback into the environment

- Natural consequence of accretion
- Collimated/launched by stellar and/or disc magnetic fields
- Many types of radio emission
- Can drive CR production in the environment
- To what degree does this impact the SF paradigm?

Ainsworth et al (2014)

Introduction

Radio emission from YSOs

Emission Mechanism	Physical Origin	YSO spatial coincidence?	α (S _ν ∝ν ^α)	Т _в [K]	Polarisation [%]	Short-term Variability
Thermal Bremsstrahlung	lonised jets	\checkmark	-0.1 - 2.0 (~0.6)	~104	0	X
Synchrotron	Jet shocks	X	~-0.5	≤10 ¹²	~10	X
Electron-Cyclotron Maser	Coronal loops, Exoplanets, Aurorae	\checkmark	0	≤10 ¹⁵	≤100	\checkmark
Plasma Emission	Coronal plasma, Exoflares	\checkmark	0 (Complicated)	≤10 ¹⁵	<50	\checkmark

Motivation

- Contribution to low-energy cosmic ray flux in SF environments from jets (Ainsworth et al, 2014; Purser et al. 2016, 2021)
- Constraining jet launch/collimation regions (Reynolds 1986)
- How common are exosolar 'aurorae' (Feeney-Johansson et al. 2021)
- Exoflares and their prevalence in YSOs (e.g. Lynch et al, 2013)
- Exoplanets and their magnetic and orbital properties (e.g. Vedantham et al. 2020, Feeney-Johansson et al. 2021)

Non-thermal Radio Emission

Thermal Radio Emission

Variable Radio Emission

YSO Sample

YSO Sample Perseus

- Multiple YSO catalogues present in literature
- SIMBAD database searched for object with classification of either 'Y*?' or 'Y*O'
- Compare positions of all catalogues' YSOs and associate sources with each other for Δx < 3 arcsec
- Resulting catalogue of 2365 potential YSOs
- Concentrate on well established Spitzer c2d sample (~385 objects)

YSO Sample Taurus

Rebull et al (2010)

• Multiple YSO catalogues present in literature

119

363

272

60

- SIMBAD database searched for object with classification of either 'Y*?' or 'Y*O'
- Compare positions of all catalogues' YSOs and associate sources with each other for Δx < 3 arcsec
- Resulting catalogue of 515 potential YSOs
- Concentrate on 'reliable' sample (~411 objects)

LOFAR Observations

LOFAR Observations Details

- Low-frequency radio survey of two, nearby star formation complexes: Perseus and Taurus
- LOFAR (120-168 MHz) observations covering ~150deg² conducted in partnership with LoTSS
- 8 hour integrations towards 20 pointings forming two mosaics
- Sensitivities of ≥ 85 µJy beam⁻¹ (pretty good at these frequencies!)
- 6 arcsecond resolution

Imaging

Polarisation, 24 epochs, multiple bandwidth selections

- Full-bandwidth, full-integration mosaic image (1)
- Full-bandwidth, single epoch, single hour images (24) [Perseus only]
- Full-integration, single band (128, 144, 160 MHz) images (3) [Perseus only]
- Stokes-V full-bandwidth, full-integration mosaic image (1) [Perseus only]
- Stokes-V full-bandwidth, single epoch, single hour images (24)
- Stokes-V full-integration, single band (128, 144, 160 MHz) images (3)

Results

ResultsPyBDSF Catalogues

- Run PyBDSF:
 - Adaptive RMS boxes (40, 10) → (20, 4)
 - Adaptive threshold 100σ
 - Source threshold at 5σ
- Source catalogues for Stokes I and V, epoch, band and the full mosaic

BW	Stokes	Epoch	Catalogue		Nsources	
			Taurus	Perseus	Taurus	Perseu
Full	I	Full	\checkmark	\checkmark	36771	31260
Band 0	I	Full	X	\checkmark	?	17333
Band 1	I	Full	X	\checkmark	?	16988
Band 2	I	Full	X	\checkmark	?	15051
Full	I	E1	\checkmark	\checkmark	8195	8401
Full	I	•••	X	\checkmark	?	•••
Full	I	E _{last}	X	\checkmark	?	14255
Full	V	Full	X	X	?	?
Band 0	V	Full	X	X	?	?
Band 1	V	Full	X	X	?	?
Band 2	V	Full	X	X	?	?
Full	V	E1 0-1h	X	X	?	?
Full	V		X	X	?	?
Full	V	E3 7-8h	X	X	?	?

Sample Spectral index and variability

$$\alpha = \frac{\log_{10} \left(\frac{S_{\nu_1}}{S_{\nu_2}}\right)}{\log_{10} \left(\frac{\nu_1}{\nu_2}\right)}$$
(1)

$$S^{2} = \frac{\Sigma \left(S_{144, E_{i}} - S_{144} \right)}{n}$$
(2)

- Derive spectral index by:
 - LSQ fitting (detection in 3 bands)
 - Equation (1) (detection in 2 bands)
- Calculate variability via Equation 2 where:
 - S₁₄₄ is either the measured full-BW, fullmosaic flux, or its upper-limit
 - S_{144,Ei} is flux in epoch *i*, or its upper-limit IF below S₁₄₄
 - N is the number of measured epochs and upper-limits below S₁₄₄

Analysis

YSO association Spatial coincidence

• Define two categories of associated emission:

- $\Delta s \le 15''$ (YSO-associated)
- Extragalactic considerations (using T-RECs):
 - 0.2±0.4 false 'YSO' per 100 YSO
 - 4.5±2.1 false 'YSO-associated' per 100 YSO
- Assuming YSO catalogues are 100% Galactic!

Detected YSOs - Perseus Coincident radio emission (<3 arcsec)

Right Ascension [J2000]

J032906.0+303039

Detected YSOs - Taurus Coincident radio emission (<3 arcsec)

J044430.8+261409

J042809.1+270248

+ 23 other coincident detections

Perseus YSOs coincident with 144 MHz emission

JID	Lbol (L⊙)	Class	S144 (mJy)	α	Cv	X∨ (%)
J032519.5+303424	0.010	Flat	2.04±0.34	-1.9±1.6	0.25±0.15	<16±3%
J032834.9+305454	0.008	Flat	3.34±0.17	-1.1±0.6	0.18±0.05	<10±1%
J032906.0+303039	0.018	0/I	15.05±0.21	-0.4±0.2	0.10±0.04	<2±1%
J033022.4+313240	0.009	Flat	1.91±0.17	-0.9±1.1	0.75±0.29	<17±2%
J034513.5+322434	0.017		0.73±0.22			<45±13%

Taurus YSOs coincident with 144 MHz emission

JID	L _{bol} (L⊙)	Class	S144 (mJy)	α	Cv	X∨ (%)
J041604.8+261801	_	Flat	2.37±0.29	_	_	_
JH 56	0.5		3.34±0.17	-	_	_
LkCa 4	1.0		15.05±0.21	-	_	_
T Tau	7.3		1.91±0.17	_	_	_
J043233.4+274409	•••	•••	1.75±0.21	•••	•••	•••

+ 24 other coincident detections

YSO association - Perseus Associated radio emission (<15 arcsec)

- 14 YSOs with 'associated' radio emission, but expect 17±8 'pollutant' sources
- Likely that most, if not all, are attributable to AGN or SF galaxies

on, but expect 17±8 'pollutant' sources able to AGN or SF galaxies

YSO association - Taurus Associated radio emission (<15 arcsec)

- 7 YSOs with 'associated' radio emission, but expect 18±9 'pollutant' sources
- Likely that most, if not all, are attributable to AGN or SF galaxies

YSO association - c2d Sample Associated radio emission (<15 arcsec)

- Upper-limit to equipartition energy attributable to shocks from YSO jets of ~7×10³⁹ erg
- Assuming a modest lifetime for shocks of ~100 yr (i.e. DG Tau A), Le~6×10²⁸ erg/s
- For the PMC, this equates to $\sim 2 \times 10^{-5}$ eV / cm⁻³ per YSO over its outflow stage (~1 Myr)
- Over cloud lifetime of 10 MYr, SF rate of 5×10⁻⁵ Msol / yr -> U_e < 2x10⁻² eV cm⁻³ (same as Galactic CR energy density)

$E_{\min} = c_{13} \left(\nu_1, \nu_2, \alpha\right) \left(fr^3\right)^{\frac{3}{7}} \left(\left(1+k\right)L_{\nu}\right)^{\frac{4}{7}}$

Pachoczyk (1970)

YSO emission Nature of the Emission

- Just consider the sources coincident with the YSO sample of Evans et al. (2009)
- Are they Jets? No! (Apart from T Tau, Coughlan et al. 2017)
- Are they Star-Planet Interactions? Going off Vedantham et al. (2020), no (but that's one object)
- ECM emission? Maybe! Going from Feeney-Johansson et al. (2021) and emission properties for co-rotation breakdown

Conclusions

Conclusions

- Detection of radio emission coincident with 5 of 385 Perseus YSOs, 29 of 411 Taurus YSOs, with 1±2 expected extragalactic contaminant sources
- Detection of 'YSO-associated' non-thermal emission with 14 of 385 Perseus YSOs, 7 of 411 Taurus YSOs, with 18±9 expected extragalactic sources
- YSO-coincident radio emission inconsistent with jets, ECM emission (exoplanets) and shocks
- YSO radio emission consistent with plasma emission from 'coronae' and exoflares, however low-polarisation is a potential issue
- Upper-limit on low-energy CR contribution for YSO jets of < 2×10⁻² eV cm⁻³ based on lack of shocked emission, same as Galactic LE CR rate. Need more TMC analysis to constrain further!