

Cosmic Rays 2 09 November 2022

The cosmic-ray ionisation rate in the prestellar core L1544

Elena Redaelli Center for Astrochemical Studies (CAS@MPE)

Collaborators: P. Caselli, A. Ivlev, O. Sipilä, M. Padovani, D. Galli

CR IN MOLECULAR CLOUDS

At $A_v > 1$, UV photons are absorbed \longrightarrow CRs only ionising agents!

CR IN MOLECULAR CLOUDS

CRs only ionising agents!

 $CR + H_2 \rightarrow H_2^+ + e^- + CR$ $H_2^+ + H_2 \rightarrow H_3^+ + H$

Ionisation fraction

Ion chemistry

Fundamental for coupling Bfields to the matter (in space, ion+neutral reactions are dominant)

DEUTERATION

 $H_3^+ + HD \rightarrow H_2D^+ + H_2$

Precursors of all deuterated species (in the gas phase)

OBSERVING THE CRIR

CR play a key role for the dynamics and chemistry of star forming regions

How can we derive it observationally?

Not an easy task

THE MOST "DIRECT" METHOD

Based on the detection of H₃+, which has a simple chemistry

 $CR + H_2 \rightarrow H_2^+ + e^- + CR \qquad \qquad H_3^+ + e^- \rightarrow H_2 + + H$ $H_2^+ + H_2 \rightarrow H_3^+ + H \qquad \qquad H_3^+ + CO \rightarrow HCO^+ + H_2$

Balancing formation and destruction, one derives CRIR

Indriolo et al. (2007, 2012)₆

THE MOST "DIRECT" METHOD

Indriolo et al. (2012) 7

AT HIGHER DENSITIES

Things become more complex...

Some sort of underlying chemical model is needed

Pioneering work: Caselli et al. 1998

- Used DCO+, H¹³CO+, C¹⁸O data
- Simple steady-state chemistry
- Strongly dependent on depletion, metal abundance,...

CRATTENUATION

Primary CRs interact with the ISM and loose energy

Padovani et al. (2009):

- Losses due to interactions with H₂
- Continuous slowing down approximation
- Various model for the CR spectra at low energies

CRATTENUATION

Padovani et al. (2018):

- Expanded the work at higher N
- Two models: "High" and "Low" (from Ivlev et al. 2015)

CR ATTENUATION: OBSERVATIONS?

Sabatini et al. (2020) 11

CRIR IN L1544

- Close (d~170 pc)
 - Isolated
 - ~10 M_☉
- Many observational/ theoretical studies

INTEGRATED INTENSITY MAPS

HC¹⁸O⁺(1-0

DCO+(3-2)

The collected data:

- IRAM 30m
- High spectra resolution
- Multiple transitions of 4 species

INTEGRATED INTENSITY MAPS

THE "INGREDIENTS"

Keto&Caselli (2015) 16

THE "INGREDIENTS"

- Gas-grain chemical code from Sipilä et al. (2015a, 2015b, 2019)
 Spin-separated for deuterium Run "statically"
 - It accepts profiles for CRIR

THE "INGREDIENTS"

A non-LTE radiative transfer code

- Performed with MOLLIE (Keto 1990)
- No full sampling of parameter space
- The whole abundance profile can be multiplied by a factor f_{corr}

ABUNDANCE PROFILES

ABUNDANCE PROFILES

HCO⁺ and DCO⁺ are more sensitive to the CRIR

ABUNDANCE PROFILES

N₂H⁺ and N₂D⁺ have a more complex dependency

RESULTING FITS: DCO+

CONCLUSIONS

- L1544 is consistent with the "low" model of PI18
- Model "high" (which reproduces data in diffuse clouds) is excluded
- Higher resolution is needed to "catch" the attenuation
- What about other sources?

Redaelli+2018 26

IRAM 30M DATA

Line	Dv (km/s)	Rms (mK)		
		L183	L429	L694-2
DCO+ (1-0)	0.2	20	40	30
DCO+ (2-1)	0.08	15	10	15
DCO+ (3-2)	0.05	40	30	20
N ₂ D ⁺ (1-0)	0.08	40	10	10
N ₂ D ⁺ (2-1)	0.04	30	30	15
N ₂ D ⁺ (3-2)	0.05	90	20	30
N ₂ H ⁺ (1-0)	0.06	20	20	10
N ₂ H ⁺ (1-0)	0.05	30	40	40
HC ¹⁸ O ⁺ (1-0)	0.07	20	15	15

All detected with S/N>10!

27

FIRST LOOK AT THE DATA

THANKS FOR THE ATTENTION!

...Questions??