Stellar cosmic ray driven chemistry in the terrestrial planet-forming region of protoplanetary disks

Donna Rodgers-Lee

Dublin Institute for Advanced Studies SFI-IRC Pathway Fellow

COSMIC RAYS2: The salt of the star formation recipe, Florence, 8th November 2022 Collaborators: Kamber Schwarz (MPIA)

dlee@cp.dias.ie

IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirin

Ionisation sources in protoplanetary disks

• Stellar cosmic rays:

Turner & Drake (2009); Rab et al (2017); Rodgers-Lee et al (2017, 2020a); Fraschetti et al (2018), Offner et al. (2019)

- Galactic cosmic rays
- Stellar X-ray & FUV photons
- Radioactive nuclides (Brandt Gaches' talk!)

Institiúid Ard-Léinn | Dublin Institute fo Bhaile Átha Cliath | Advanced Studies

Galactic cosmic rays are suppressed by magnetised stellar winds

Bhaile Átha Cliath Advance

Can stellar cosmic rays explain low CO abundances observed by ALMA?

- Low CO abundances at large radii in protoplanetary disks (Miotello et al 2017)
- Schwarz et al (2018): Chemical processing not enough

Bhaile Átha Cliath Advanced Studies

Alexandra Mulholland (undergrad. research project)

Faster diffusion leads to higher ionisation rate at larger distances

 \rightarrow Considering GeV energy cosmic rays and diffusive transport

Rodgers-Lee - dlee@cp.dias.ie

Stellar cosmic rays deplete CO in the inner terrestrial planet-forming region

Stellar cosmic rays deplete CO in the inner terrestrial planet-forming region

Stellar cosmic rays deplete CO in the inner terrestrial planet-forming region

CO is significantly depleted within 1 Myr

CO is significantly depleted within 1 Myr

Stellar cosmic ray effect on most abundant species ISM GCRs

11

Bhaile Átha Cliath Advanced Studie

Stellar cosmic ray effect on most abundant species ISM GCRs

Bhaile Átha Cliath Advanced Studie

Stellar cosmic ray ionisation rates agree better with Spitzer observations

- Spitzer fluxes (Banzatti et al 2020)
- Synthetic spectra using Slabspec (Salyk et al 2020)
- 15 micron HCN band and 14 micron CO₂ band

Next steps

Can we explain radially varying ionisation rates? (Seifert et al 2021)

What is the radial dependence of the Galactic cosmic ray spectrum?

What about transition disks?

Conclusions

GeV energy stellar cosmic rays can significantly deplete CO in the terrestrial planet-forming region of protoplanetary disks within 3 Myr

Spitzer flux ratio measurements of HCN and CO₂ are better matched when stellar cosmic rays are included

JWST's MIRI may contribute to our understanding of stellar cosmic ray fluxes

Go raibh maith agaibh (Thank you!) Any questions → dlee@cp.dias.ie