

High Cosmic Ray Flux in the Galactic Center Region (the ICM)

F. Yusef-Zadeh Northwestern University

Outline

□ Galactic Center ISM

- high cosmic ray flux
- 100's of needle-like filaments
- morphology

Intracluster Medium

- morphology
- 10-20 filaments

□ Origin of GC and ICM Filaments

- cometary
- turbulent

High CR Flux Four pieces of evidence for high cosmic ray Ionization rate $\zeta \sim 10^{-15}$ - 10^{-14} s⁻¹

- 1. High ζ from H₃⁺
- Simple chemistry and straightforward analysis
- 2. High ζ from NT radio flux
- 280x70x280 pc
- B_{eq}=10-20μG (uncertainty e/p ratio)

- 3. High ζ from warm gas (T)
- Warm temp to cooling rate to heating rate (ζ_H)
- Total heating rate ~ 1-2x10³⁹ erg/s

4. High ζ : 6.4 keV line from molecular clouds

FYZ et al. 2013

High CR Flux Azimuthal to vertical magnetic field

FYZ+Wardle 2019

- CR-driven wind
- O Lift the material
- O Heat the gas to high latitudes
- O Magnetic field geometry

The inner ~2 degrees in Galactic Center

- Linear polarization of infrared starlight indicates direction of magnetic field projected on the sky....
 - aspherical dust particles are aligned with short axis parallel to magnetic field
 - more strongly absorb linear polarization parallel to long axis remainder is polarized perpendicular to magnetic field
 - Blue line segments show inferred field direction
 - horizontal within the galactic plane but transitions to vertical above and below

High CR Flux Numerous magnetized filaments

- MeerKAT data
- ~1000 identified filaments
- The emission tracks
 CR electrons
- High concentration of CR sources
- GeV cosmic ray electrons
- $P_{cr} \sim 10^3 \text{ eV cm}^{-3}$

FYZ, Arendt, Wardle, Heywood, Cotton and Camilo (2022)

Filtered Image 20 cm (MeerKAT)

High CR Flux Numerous magnetized filaments

Length > 132 asec

Filaments as cometary tails Pressure equilibrium with diffuse low-energy CRs

- The wind wraps magnetic field around a moving obstacle
- Magnetic field and CR electron density pressure

3C40B filaments

ESO0137

Physical Parameters	Galactic Center Filaments	Radio Galaxy Filaments
length (pc)	[4, 60]	10 ^{3–5}
typical width (pc)	0.5	$few \times 10^3$
typical aspect ratio	[10, 100]	[10, 70]
magnetic field strength (mG)	[0.1, 0.6]	few $\times 10^{-3}$
spectral index (α)	~ -0.8 (mean) [-2, 0]	[-2, -1]
surface brightness (mJy beam ⁻¹)	[0.01–10]	[0.01, 10]
spacing between filaments (pc)	~0.7 mean [0.4, 1.2]	$[10-20] \times 10^3$

Filaments as cometary tails Cometary tail behind obstacles

- The wind wraps magnetic field around a moving obstacle
- Magnetic field and CR electron density amplified by compression

Cometary tail behind a cloud

- The wind wraps magnetic field around a moving obstacle
- Magnetic field and cr electron density amplified by compression

Extragalactic Filaments

Turbulent Simulations

- Field made by turbulence
- Field is wrapped around turbulent eddies
- Amplified by shear
- Field aligns along sheared layer of an outflow

Porter et al. (2015)

- Summary
- Multiple lines of evidence for high cosmic ray pressure
- High cosmic-ray pressure drives a wind
- Magnetized filaments

Created by winds interacting with an obstacle ? Turbulence amplification of the magnetic field?

- Future
 - High resolution to test the interaction picture