Carbon Isotope Fractionation of Complex Organic Molecules in Star-Forming Cores. Ichimura et al. 2024, ApJ, 970, 55

12C/13C ratio of COMs toward IRAS 16293-2422B

A 1" (120 AU)

IRAS 16293-2422: Jorgensen et al. 2016

ALMA PILS Survey of the Class 0 low-mass protostellar object IRAS 16293-2422B has detected several COMs (Complex Organic Molecules)

CH2CO, **CH3CHO**, **HCOOH** : ${}^{12}C/{}^{13}C = 69$ (ISM) **CH3OCH3** : ${}^{12}C/{}^{13}C = 34$ Jorgensen et al. 2018 $^{12}C/^{13}$ 150 -100 • 69 ISM COMs 30

2

COMs(Complex Organic Molecules) in a Star-Forming Core

3

<u>Aims</u>

- Investigate the ¹²C/¹³C fractionations of COMs in a star-forming core.
- Discuss the chemical pathways occurring within these star-forming cores.

Astrochemical Model : Chemical Kinetics Model

- Rate equation approach.
- Based on gas-grain Model (Rokko; Furuya et al. 2015) Gas-phase reaction, adsorption, desorption, diffusion reaction on the grain surface
- Isotope exchange reactions (Roueff et al. 2015; Colzi et al. 2020; Loison et al. 2020)

Physical Model: Evolution of a Star-forming Core

Fluid Parcel

Prestellar Phase (10⁶ yr) : Cold Phase

Gas & Dust temperature: 10 K Number density of H: 2.28 x 10⁴ (/cm³) Visual Extinction: 4.5 (mag)

CR Ionization rate: 1.3 x 10^{-17} (s⁻¹) for the base model H and L model (Padovani et al, 2018)

Protostellar Phase : Warm-up Phase

Radiation Hydrodynamic model; Masunaga & Inutsuka 2000

Prestellar Phase

Carbon Isotope Fractionation

 $^{13}C^+ + CO \quad \leftrightarrows \quad C^+ + {}^{13}CO + \Delta E$

- Isotope exchange reactions result in ¹²C/¹³C fractionation of C⁺ and CO.
- This fractionation is constant with Colzi et al. (2020), Loison et al. (2020)
- The fractionation propagates into other molecules through chemical reactions.

Dashed lines: Icy molecules Solid lines : Gas molecules

Ĭchimura et al. 2024

Protostellar Phase

Comparisons with Observations of IRAS16293-2422B

Effect of CR on Complex Organic Molecules

Collapse Phase Effect of CR on chemistry of CH3OCH3

The ¹²C/¹³C of sublimated **CH30CH3** approaches to that of **CH30H** by Cosmic Ray ionization. (proton transfer induced by CR ionization)

- H (High CR ionization rate) model: comes from H₃⁺ emission in diffuse clouds.
- L (Low CR ionization rate) model: comes from the Voyager 1 data.

Collapse Phase

High Cosmic Rays Ionization Rates (H model)

Collapse Phase

Cosmic Ray Acceleration after protostar formation

- CR acceleration after protostar formation CR ionization rate is increased from 1.3×10^{-17} /s to 1.3×10^{-14} /s after the protostar formation (Padovani et al., 2015, 2016).
- Sublimated CH3OCH3 is destroyed by CR.
- CH₃OCH₃ is newly formed from CH₃OH and has low ${}^{12}C/{}^{13}C$.
- The ¹²C/¹³C ratio of CH₃OCH₃ is still higher than the observation.

Effect of CR on Complex Organic Molecules

<u>Summary</u>

- We investigate the carbon isotope fractionations of COMs in star-forming core.
- High Cosmic Ray ionization rate model cannot reproduce the observations of ¹²C/¹³C ratios of CH₃OCH₃
- Cosmic Ray acceleration after birth of protostar could make slightly low carbon isotope ratio of CH3OCH3.