

Re-evaluation of the cosmic-ray ionization rate in diffuse clouds

Marta Obolentseva¹, Alexei Ivlev¹, Kedron Silsbee^{1,2}, David Neufeld³, Paola Caselli¹, Gordian Edenhofer⁴, Nick Indriolo⁵, Thomas Bisbas⁶

¹Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

²University of Texas at El Paso, El Paso, TX, 79968, USA

³Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA

⁴Max-Planck-Institut für Astrophysik, 85748 Garching, Germany

⁵AURA for ESA, Space Telescope Science Institute, Baltimore, MD 21218, USA

⁶Research Center for Astronomical Computing, Zhejiang Lab, Hangzhou 311100, China

Obolentseva et al. ApJ 973, 142 (2024)

Variety of processes driven by low-energy CRs

- Gas ionization
 - ⇒ coupling to magnetic field, properties of turbulence, ...
- Gas heating
 - \Rightarrow cloud dynamics, chemistry, ...
- Dust evolution

 \Rightarrow dust coagulation, chemical processes on grain surface, ...

- Processing of icy mantles
 - \Rightarrow abundances of complex molecules, desorption of ices, ...

•

Measurements of CR ionization rate ζ

Specific ions generated by CRs are measured (in absorption or emission):

- Atomic gas, ζ_H : OH⁺, H₂O⁺, ArH⁺, ...
- Molecular gas, ζ_{H2} : (H_3^+) , HCO⁺, H_2D^+ , ...

Irrespective of the tracer, the deduced parameter is always ζ/n_{tot} .

Total density n_{tot} in diffuse gas is evaluated from measuring rotational states of C₂ (Sonnentrucker et al. 2007).

Re-evaluated H_3^+ measurements: targets

Observations of H_3^+ ions are considered as the most reliable method to measure the H_2 ionization rate in diffuse molecular clouds (Indriolo & McCall 2012).

$$\zeta_{\mathrm{H}_2} n_{\mathrm{H}_2} = k n_{\mathrm{H}_3^+} n_e$$

$$\zeta_{\mathrm{H}_2} = k \, oldsymbol{x_e} \, oldsymbol{n_{\mathrm{tot}}} \, rac{N(\mathrm{H}_3^+)}{N(\mathrm{H}_2)}$$

We selected all available target stars with directly measured *N*(H₂) and *N*(H):

Gas distribution from 3D dust extinction maps

Re-evaluation of gas density (Neufeld et al. 2024)

The collisional coefficients were strongly **underestimated** ⇒ the estimated density was **too high**!

6

Gas density: Dust map versus C₂ data

Simulated 3D physical structure of gas clumps

3D PDR code (Bisbas et al. 2012)

 ζ_{H2} is the only unconstrained parameter

Simulations versus observations

Simulations versus observations (cont'd)

Assessment of uncertainties

Re-evaluated ionization rate

