

### The effects of Cosmic-ray ionization rate on the nebular gas in nearby AGN and starburst galaxies

Evgenia Koutsoumpou (NKUA)

**Collaborators:** 

J. A. Fernández Ontiveros (CEFCA) K. M. Dasyra (NKUA) L. Spinoglio (INAF–IAPS)



22nd-24th October 2024 Arcetri, Florence, Italy



## **Feedback Mechanisms**

★ Photoionization
 ★ Shocks
 ★ X-ray Heating
 ★ Cosmic Rays



## **Feedback Mechanisms**

★ Photoionization
 ★ Shocks
 ★ X-ray Heating
 ★ Cosmic Rays





# **BPT Diagnostic Diagrams**

# **BPT Diagrams**



# **BPT Diagrams**



*Evgenia Koutsoumpou - evkoutso@phys.uoa.gr* 

# **Motivation**

## Works so far:

- ★ Focus on photoionization & shocks
- ★ Do not include CRs
- ★ Use higher than solar metallicities



## **Our models:**

- Study CRs as an ionization mechanism along with photoionization
- Explore CR impact deep in the clouds
- ★ Assume solar metallicity



**Feltre+2016** 

## **Galaxy Sample**

#### © NASA, ESA & A. van der Hoeven

### NGC 253 • Starburst galaxy

© ESO

#### Centaurus A + • Radio galaxy

© X-ray: NASA/CXC/CfA/R: Kraft, et al.; Radio: NSF/VLA/Univ. Hertfordshire/M, Hardcastle; Optical: ESO/WFI/M: Rejkuba, et al.

# NGC 1068AGN & starburst composite

© NASA/ESA Hubble Space Telescope

NGC 1320 • AGN radiation dominated nucleus



*Evgenia Koutsoumpou - evkoutso@phys.uoa.gr* 

## **Region Selection - Ha Linemaps - MUSE Data**



Evgenia Koutsoumpou - evkoutso@phys.uoa.gr

## **Region Selection - Ha Linemaps - MUSE Data**



## **Region Selection - Ha Linemaps - MUSE Data**







Evgenia Koutsoumpou - evkoutso@phys.uoa.gr

Fig. 2: BPT emission lines' fit in the rest frame of Centaurus A.

# **CLOUDY (Ferland+2017) Modeling Parameters**

```
*AGN and Star-forming models*-3.5 \leq \log U \leq -1.5*0 \leq \log n_H \leq 4*-14 \leq \log (\zeta_{CR}/s^{-1}) \leq -12*1 Z\odot
```

# **CLOUDY (Ferland+2017) Modeling Parameters**



Evgenia Koutsoumpou - evkoutso@phys.uoa.gr

# **CLOUDY (Ferland+2017) Modeling Parameters**



Evgenia Koutsoumpou - evkoutso@phys.uoa.gr

# **BPTs - AGN Models**



*Evgenia Koutsoumpou - evkoutso@phys.uoa.gr* 





 log(ζCR/s<sup>-1</sup>) ≥ -13
 in agreement with:
 ★ Molecular cloud chemistry
 (González-Alfonso+2013)

★ Synchrotron fit (lower limit)





 log(ζcR/s<sup>-1</sup>) ≥ -13
 in agreement with:
 ★ Molecular cloud chemistry
 (González-Alfonso+2013)

★ Synchrotron fit (lower limit)

23

Evgenia Koutsoumpou - evkoutso@phys.uoa.gr





 log(ζCR/s<sup>-1</sup>) ≥ -13
 in agreement with:
 ★ Molecular cloud chemistry
 (González-Alfonso+2013)

★ Synchrotron fit (lower limit)

24 Evgenia Koutsoumpou - evkoutso@phys.uoa.gr

# **BPTs - Star-Forming Models**



NGC 253  $log(\zeta CR/s^{-1}) \approx -12$ According to:  $\star Behrens+2022$   $\star Holdship+2022$  $\star Beck+2023$ 

Evgenia Koutsoumpou - evkoutso@phys.uoa.gr





log(ζCR/s<sup>-1</sup>) ≃ -12 According to: ★ Behrens+2022 ★ Holdship+2022 ★ Beck+2023

27 Evgenia Koutsoumpou - evkoutso@phys.uoa.gr



- What happens within the gas clouds?
- Is the emission of [SII] and [NII] boosted?

**AGN Models** 





Evgenia Koutsoumpou - evkoutso@phys.uoa.gr

30



4.0

4.0







[NII]



Photoionization

CRs

**Photoionization** 

CRs





[SII]



Photoionization

CRs

**Photoionization** 

CRs





Ηα



**AGN Models** 



*[0111]* 





35 Evgenia Koutsoumpou - evkoutso@phys.uoa.gr





• How do CRs affect Te along photoinization?







Evgenia Koutsoumpou - evkoutso@phys.uoa.gr







(b) Gas temperature for  $n_{\rm H} = 100 \,{\rm cm}^{-3}$ , SF models.







Evgenia Koutsoumpou - evkoutso@phys.uoa.gr

# Conclusions

- **CRs** ( $\geq 10^{-13}$  s<sup>-1</sup>) an important source of feedback in AGN and starbursts.
- **\bigstar** CRs penetrate deep within the clouds  $\rightarrow$  UV and secondary ionization.
- ★ 'Warm' secondary ionized layer (~10<sup>4</sup> K) → Te enhances emissivity of low ionisation lines ([NII], [SII]).
- Emissivity of [NII], [SII] ↑ + Emissivity of Hα, Hβ, [OIII] ~fairly
  constant→AGN & SF models ~7.
- Photoionization + CR ionization do not require supersolar metallicities to reproduce Seyfert/LINER loci in the BPT diagrams.

# Thank you!