

In-situ accelerated energetic particles in the environment of young stellar objects

A.Marcowith (Laboratoire Univers & Particules de Montpellier)

Collaborators: A. Araudo, V. Brunn, C. Meskini, M. Padovani, C. Rab, C. Sauty

Scientific context

- Star formation / Accretion & ejection in YSO
 - Ambipolar diffusion, magnetic resistivity effects essential to fix disc properties
 - Magneto-centrifugal process essential for outflows
- *** lonisation rate** controls magnetic field / matter coupling : Role of nonthermal particles ?

Commerçon et al 2022 non ideal MHD simulations

upleft : time evolution of the sink mass

upright : time evolution of the disk mass

lowleft : time evolution of the outflow mass

lowright : evolution of the outflow as function of the sink and disk mass

Non-thermal signatu

- Synchrotron radiation : growing number of objects emission from their jets (both massive and solar massive
- Purser et al 2017 : mean spectral index : -0.55 co synchrotron emission

Herschel observations of HCO⁺, N₂H⁺ ion species show abundances explain by $\zeta \sim 3 \ 10^{-16} \ \text{s}^{-1}$ (continuous line below)

- particles ...
- per unit time.

m

Enhanced ionisation rates deduced from HCO+ / N_2H^+ abundances (eg Podio et al 2014)

00

OtS

Tau

Possibly related to non-thermal

ionization with main parameter $\zeta = CR$ ionization per H atom

Galactic Cos

Likely restricted to outer enveloppes u ightarrow

Full gravitational luminosity

> even a fraction of % of $L_{\rm grav}$ converted i

Molecular cloud to cloud core scales

ζ [s⁻¹]

10

10⁻¹⁸

10⁻¹⁰

10⁻¹⁵

10⁻¹⁶

 10^{-17}

10⁻¹²

10⁻¹⁹

10⁻²⁰

10⁻²¹

50

Fujii & Kimura 2023 (w/o T-Taurisphere)

CR contribute to rates $10^{-19/-18}$ s⁻¹ at disc mid-plane, difficult to explain ion species abundances at inner discs

Fitz-Axen et al 2024 : bi-fluid MHD simulations

ontribution

hents (Padovani et al 2015)

minosity reaching the stellar core

 $1.2 \times 10^{29} \text{ erg/s}$ e_{CR} CR energy density

kes over L_{CR}

ALMA data fitting of DM tau disc

Long et al 2024 (w T-Taurisphere)

In-situ acceleration sites / mechanisms

- Shocks (part I, cf Padovani et al 2015, 2016, 2021, Araudo et al 2021) :
 - Accretion shocks
 - Shocks in jet
 - Termination shock & hot-spot/back flows (weak shocks + turbulence reacceleration) * back flows not treated yet.
- Stellar flares (magnetic reconnection) interacting with the accretion disc (part II, cf Brunn's talk, Brunn et al 2023, 2024).
- MRI-induced Turbulent « corona » (magnetic reconnection + Stochastic Fermi acceleration) (part III, Brunn et al 2025 in prep).

Part I shock acceleration

Main model parameters (W/S = jet, W = slow shock, S = fast shock, P=protostellar shock) and main results (see Padovani et al 2016)

		shock speed	Magnetic field amplitude	gas density	ion fraction	Temperature	compression ratio					
-	Model	<i>U</i> [km s ⁻¹]	<i>B</i> [G]	$n_{\rm H}$ [cm ⁻³]	X	<i>T</i> [10 ⁴ K]	r	E _{max} [GeV]	\widetilde{P}_{CR} [10 ⁻²]	λ	p _{inj} [MeV/c]	p _{max} [GeV/c]
	W	40	5×10^{-5}	10 ⁵	0.33	1	2.977	0.13	0.88	4.010	0.306	0.505
	${\mathcal S}$	160	10^{-3}	6×10^{5}	0.60	1	3.890	12.9	4.70	4.062	1.146	13.762
-	\mathcal{P}	260	5	1.9×10^{12}	0.30	94	2.290	11.4	0.03	3.950	2.058	12.306

EP pressure is low enough for shock to unmodified, so EP distribution follows th test-particle solution.

be be	fraction of shock kinetic energy into EP	proton injection momentum to thermal momentum	min/max proton momenta	
----------	--	---	------------------------------	--

Confront theory and observations

DG Tau hot spot

LH spots distance where ionization rates have been inferred, in dashed derived ionization rate.

LH 1157-B1

OMC2-FIR4

YSO as source EPs: ionization and dynamical effects

- See poster by Nai Chieh Lin
- Bi-fluid (gas+CR) simulations using RAMSES
- Only use model P (CR injection from protostellar shock)
- Default diffusion coefficient : $10^{24} \text{cm}^2/\text{s}$
- For now one CR component, but soon multi components (see Girichidis et al 2020)

Part II: stellar flares and magnetosphere - accretion disc interaction

from Waterfall et al 2020

> EPs are injected during episodic magnetic reconnection events, with energetics sampled from Chandra data (COUP) and solar flare observations.

EPs produced above/close to the disc propagate along disc magnetic fields

star-disc interaction configurations

from Hamaguchi et al 2012

Ionisation rates

single 10 MK (luminous) flare ionisation rate

versus effect of stellar X-rays

see talk by V. Brunn

Multiple flares ionisation rates

Part III: turbulently-driven magnetic reconnection in accretion discs

the red curve delimits regions with $\alpha = \alpha_{max}$ where MRI is saturated (Bai & Stone 2011), based on a condition over plasma beta parameter.

First estimations : ionisation rates

 $\left(\frac{E}{E_{e}}\right)^{2} \exp(-E/E_{\text{max}})$ in the MRI saturated zone at a given radius, N_{0} deduced from free electron density, Injection $N_{EP}(E) = N_0$

Hence the parameters are : N_e , T, a, E_{max} , continuous slowing down approximation is used for EP transport.

 $E_c = 3k_BT$ (see Brunn et al 2023), E_{max} fixed by the size of reconnection regions L fixed by the scale at which MRI grows the fastest.

Ionisation as function of ($E_{\rm max}, \alpha$)

Concusions

- In-situ EP should take over CR contribution at YSO inner disc and in jets.
- The model can help explaining non-thermal radio emission and high ionization rates @ 100-1000 AU

clusters) of the parent molecular cloud (Padovani et al in prep)

- EP can contribute to dynamics because of ionization and pressure effects (see N.C. Lin)
- EP can potentially be a source of ionization @ 1-10 AU and explain some ALMA data.

=>YSO should hence be proper sources of EPs and of local ionization (YSO)

