Ionization rate in extreme infrared galaxies using JWST

Miguel Pereira Santaella (IFF)

Cosmic Rays 3 Florence, Oct 2024

Images:NASA, ESA, CSA, STScI 🐋

PS+24a, A&A 689, L12 PS+24b, A&A 681, A117

Local dusty galaxies: U/LIRGs

LIRGs: $10^{11}L_{Sun} < L_{IR(8-1000\mu m)} < 10^{12}L_{Sun}$ ULIRGs: $10^{12}L_{Sun} < L_{IR(8-1000\mu m)} < 10^{13}L_{Sun}$ (Sanders & Mirabel 96, Pérez-Torres+21)

>10-100 times more luminous than normal spirals

Not common locally, but important at z > 1

Miguel Pereira Santaella

What powers U/LIRGs?

- Extremely obscured systems (average Av > 50-100 mag)
- Mid-IR ISO & Spitzer (Genzel+98, Veilleux+09, Nardini+10, Alonso-Herrero+12) :

Star formation dominates, but (detected) AGN increases with L(IR)

Compact infrared sources

 Majority have compact nuclei in radio and sub-mm with VLA and ALMA (Barcos-Muñoz+17, Pereira-Santaella+21, Hayashi+21)

- r = < 10 - 80 pc ~240 GHz continuum 0.05"-0.2" ALMA

JWST NIRSpec archive data

- ~25 U/LIRGs with JWST IFU spectroscopy as part of ERS, GTO, GO and GOALS Large Program
- NIRSpec (3–5µm) ~0.2" resolution

LIRGs d < 100 Mpc Spatially resolved

ULIRGs d > 200 Mpc Unresolved nuclei

H₃⁺ and Cosmic Rays

• H₃⁺ production:

$$H_2 + CR \text{ (or X-ray)} \rightarrow H_2^+ \rightarrow H_3^+$$

and destruction:

 $H_3^+ + e^-$ or $H_3^+ + X \rightarrow HX^+$ (X are abundant molecules, eg CO)

H₃⁺ can be observed through IR ro-vibrational bands in the JWST range

Key molecule for the ISM chemistry

Extragalactic H₃⁺ before JWST

2 detections (Geballe+06 and +15) from the ground: R-branch

Cosmic Rays 3 – Florence Oct 2024

Miguel Pereira Santaella

Extragalactic H₃⁺ with JWST/NIRSpec

13 out of 20 nuclei detected with JWST. R, **Q** and **P** branches

- 10 nuclei absorption
- First detections of H₃⁺ emission from the ISM in 3 objects

Where is H₃⁺located in these objects?

- In MW H₃⁺ absorption toward continuum of individual stars
- In U/LIRGs H₂⁺ are toward dust continuum
 - Dust dominates at > $3.5 \,\mu m$
 - Lines with same lower level (3,3)

P(3,3) 4.35µm. highest EW

- Q(3,3) 3.90µm
- R(3,3) 3.43µm. Not detected

CSIC

H₂ ionization rate

- For low $\zeta \rightarrow H_3^+$ abundance proportional to ζ
- For high $\zeta \rightarrow H_3^+$ abundance decreases
 - Molecular fraction decreases
 - Free electron abundance increases \rightarrow enhanced recombination of H_3^+

H₂ ionization rate

- N(H₃⁺) from absorption lines
- N_H based on the dust optical depth
- H_{3}^{+} abundance 2x10⁻⁷ (>= GC)
 - $\rightarrow \zeta \sim 3x10^{-16} > 4x10^{-15} \text{ s}^{-1}$

H₂ ionization rate

- $N(H_3^+)$ from absorption lines
- N_H based on the dust optical depth
- H_{3}^{+} abundance 2x10⁻⁷ (>= GC)

→ $\zeta \sim 3 \times 10^{-16}$ - > 4×10⁻¹⁵ s⁻¹

 The 3 "less obscured" AGN (N_H ~ 5x10²³ cm⁻²) have H₃⁺ upper limits.

High X-ray flux imply $\zeta > 10^{-13} \text{ s}^{-1} \rightarrow \text{low H}_3^+$ abundance

Miguel Pereira Santaella

H₃⁺ emission in NGC3256

Emission detected for the first time in ISM in 3 objects : NGC3256-S most nearby (40 Mpc) Spatially resolved emission

Miguel Pe

- N: face-on nuclear starburst
- S: edge-on extremely obscured AGN + radio jet + collimated molecular outflow (v~100-1000 km/s)

H₃⁺v2=1 excitation

Collisions with H₂?

X Low density in the outflow

Formation pumping. $H_2^+ + H_2^- \rightarrow H_3^+ + H$ highly exothermic (E~20000 K)

Miguel Pereira Santaella

Formation pumping

Miguel Pereira Santaella

H₃⁺v2=1 excitation

- X Collisions with H₂?
 Low density in the outflow
- X Formation pumping.
 H₂⁺ + H₂ → H₃⁺ + H
 highly exothermic (E~20000 K)

IR radiation

Miguel Pereira Santaella

CO v=1-0 4.7µm emission from the outflow

- Bright mid-IR continuum from dust around AGN
- Illuminates cold molecular cloud CO absorbs photons
- Re-emitted in all directions

Miguel Pereira Santaella

IR radiation

- From the emission line ratios
 - Relative population of the v=0 levels

- IR radiation excites v=1 levels \rightarrow emission
- Collisions with H_2 thermalize lower levels
- Formation pumping populate "metastable" levels
- Estimated H₃⁺ fraction in metastable levels (>50%)
- Will allow measurements of ζ in the molecular outflow → Quantify molecular gas destruction and Energy and momentum transfer
 IFF CSIC

Miguel Pereira Santaella

Summary

- H_3^+ absorption. Pereira-Santaella+24a
 - Associated to dust continuum in the nucleus
 - H₃⁺ possible destroyed in less obscured AGN
 - High ζ ~ 3x10⁻¹⁶ > 4x10⁻¹⁵ s⁻¹

- H₃⁺ emission. Preliminary results
 - Excited by IR radiation
 - Level population dominated by collisions with H₂ (low-J) and formation pumping (high-J)
 - >50% in metastable levels

