Cosmic-ray attenuation in models of Photodissociation Regions

Theodoros Topkaras¹ (topkaras@ph1.uni-koeln.de), V. Ossenkopf-Okada¹, Markus Röllig²

¹I. Physikalisches Institut, Universität zu Köln, Germany, ²Physikalischer Verein Frankfurt, Germany

Cosmic Rays 3 - The salt of the star formation recipe

- ISM regions governed by strong UV radiation (Hollenbach and Tielens 1999)
- Locations with embedded star formation
- Heating/cooling mechanisms influence the chemistry of neutral atomic gas and molecular gas
- PDR lines: [CI], [CII], CO (J=1-J=20), etc.
- Advancements in IR (SOFIA, JWST) and submm lead to deeper understanding of PDRs
- Questions: How cosmic rays influence the PDR chemistry?
- Small changes on the surface but significant deeper in the cloud ($A_v > 10^{-1}$ mag)

NASA, ESA, CSA, Jason Champion (CNRS), Pam Jeffries (STScI), PDRs4ALL ERS Team

- ISM regions governed by strong UV radiation (Hollenbach and Tielens 1999)
- Locations with embedded star formation
- Heating/cooling mechanisms influence the chemistry of neutral atomic gas and molecular gas
- PDR lines: [CI], [CII], CO (J=1-J=20), etc.
- Advancements in IR (SOFIA, JWST) and submm lead to deeper understanding of PDRs
- Questions: How cosmic rays influence the PDR chemistry?
- Small changes on the surface but significant deeper in the cloud ($A_v > 10^{-1}$ mag)

NASA, ESA, CSA, Jason Champion (CNRS), Pam Jeffries (STScI), PDRs4ALL ERS Team

- ISM regions governed by strong UV radiation (Hollenbach and Tielens 1999)
- Locations with embedded star formation
- Heating/cooling mechanisms influence the chemistry of neutral atomic gas and molecular gas
- PDR lines: [CI], [CII], CO (J=1-J=20), etc.
- Advancements in IR (SOFIA, JWST) and submm lead to deeper understanding of PDRs
- Questions: How cosmic rays influence the PDR chemistry?
- Small changes on the surface but significant deeper in the cloud ($A_v > 10^{-1}$ mag)

Schematic representation of a PDRs

Markus Röllig and Volker Ossenkopf-Okada 2022

Theodoros Topkaras - Cosmic Rays 3

Cosmic Rays information

Significant variation of the measured CRIR in different environments (Obolentseva et al.2024, Luo et al. 2024)
Single molecule usage for the computation of ζ_{H2} can be biased (Le Petit et al.2004)

Ruszkowski & Pfrommer 2023 (Modified based on the original from Lenok 2022, PhD Thesis)

Cosmic Rays information

Significant variation of the measured CRIR in different environments (Obolentseva et al.2024, Luo et al. 2024)
Single molecule usage for the computation of ζ_{H2} can be biased (Le Petit et al.2004)

Ruszkowski & Pfrommer 2023 (Modified based on the original from Lenok 2022, PhD Thesis)

Schematic representation of a PDRs with Cosmic Rays

Markus Röllig and Volker Ossenkopf-Okada 2022

Theodoros Topkaras - Cosmic Rays 3

How do we study PDRs

- Combining observations and simulated data
- Modeling of PDRs is essential to better understand them (Hollenbach et al. 1971, Jura 1974, Glassgold & Langer 1975, Black & Dalgarno 1977)
- Numerous PDR codes: KOSMA-T, KOSMA-T3D, Meudon, 3D-PDR, UCL_PDR, etc. (Röllig et al.2007)
- Constant cosmic ray treatment is problematic

≻ <u>KOSMA-t</u>

- Only PDR model with spherical geometry (Markus Röllig and Volker Ossenkopf-Okada 2022)
- Upgraded and <u>adaptive</u> chemistry to include the full surface chemistry (UMIST Database for Astrochemistry; McElroy et al. 2013)
- Continuum radiative transfer using MCDRT code (Szczerba et al. 1997, Röllig et al. 2013)
- Bulirsch-Stoer method (Press et al. 2007, Sect. 16.4) instead of fixed spatial model grid
- Update from a shielded CRIR to a unshielded (attenuated)

KOSMA-т Structure

Pre-processing Global iteration Yes MCDRT dust temperature **Spatial loop** dust continuum Global **FUV** attenuation Center Output reached Convergence -Yes-HDF/ASCII Local iteration Yes Determine step width No E_{tot}=0 Chemical Energy Advance to next position Balance Balance FUV Line Post-processing Radiative Transfer Energy ONION Level spherical Population Update: shielding, esc. prob. non-LTE RT Emissivities

Markus Röllig and Volker Ossenkopf-Okada 2022

Cosmic ray attenuation: The Model

Simple power law attenuation (Padovani et al.2018)

Cosmic ray attenuation: The Model

> Initial CRIR, α_{att} =0.4, R=10²⁰ cm⁻² are given

Initial Conditions: $n_{H2} = 10^4 \text{ cm}^{-3}$, Z=1.0, R=1pc, $\zeta_{CR} = 1 \times 10^{-15} \text{s}^{-1}$, G=10

Model computes a new CRIR with changing column density based on the adaptive grid

Structure, chemistry and intensity changes can be visualized using our KOSMA_tau_read tool (*still in development*)

Motivation

Update KOSMA-T model to include CR attenuation (Padovani et al.2018)

- Develop the necessary sensitivity tool to detect changes on the PDR structure (*still in development*)
- Establish the PDR chemistry as a diagnostic tool to study the absolute CR intensity and its attenuation

Residuals Result

Intensity Results

Large absolute intensity difference in high CR environments

Theodoros Topkaras - Cosmic Rays 3

Conclusions and Future Plans

- CR attenuation significantly alters the structure of the PDR
- Implemented model highly depends on the initial CRIR
- SO₂ is a promising species for the detection of CR attenuation accessible with mm observations
- Continue with the development of the KOSMA_tau_read sensitivity tool and utilize the new upgrade to run new PDR grids (STAY TUNED!)