THE CIRCUMGALACTIC MEDIUM around Dwarf Galaxies

and the COS-Halos Team

Gas Flows Drive Galaxy Formation

ALL GALAXIES SELECTED PRIOR TO ABSORPTION

ALL GALAXIES SELECTED PRIOR TO ABSORPTION

The COS-Dwarfs Survey

43 galaxies around 41 Quasars 129 HST Orbits

${\small \textcircled{O}}$ Morphology of the host galaxies from SDSS

Morphology of the host galaxies from SDSS

SDSS Spectra of the foreground galaxies

log M* 9.53 $\rho = 38 \text{ kpc}$ SFR =1.11 M_☉/year Z_{gal} =0.018145 z_{QSO} =0.3650

Morphology of the host galaxies from SDSS

HST-COS spectroscopy of quasars

SDSS Spectra of the foreground galaxies

log M∗ 9.53 ρ = 38 kpc SFR =1.11 M_☉/year Z_{gal}=0.018145 z_{QS0}=0.3650

Morphology of the host galaxies from SDSS

HST-COS spectroscopy of quasars

How is gas distributed around galaxies?

Density Ionization Potential
 Temperature

Testing Feedback Models

Wind Model	Wind Velocity	Mass-Loading Factor
Fiducial v2 energy driven scaling for dwarfs (ezw)	V _w	σ _{gal} σ _{gal}
Constant Wind (CW)	V	η=2
No Wind		η=0

Testing Feedback Models

Testing Feedback Models

CGM over 3 decades of Stellar Mass

CGM over 3 decades of Stellar Mass

Total of 94 galaxies with 272 HST Orbits

Metals Census over Three Decades of Stellar Mass

Metals Census over Three Decades of Stellar Mass

Metals Census over Three Decades of Stellar Mass

The Metal Content of The CGM

3 Decades of High lons

Estimating CGM metal masses $M_Z = \pi R^2 N_{ion} Am_H M_{\odot}$

 \dots then scale to minimum ionization correction f \dots

 $\frac{M_{Oxygen}}{M_{Carbon}} \gtrsim 1.2 \times 10^7 (0.2/f_{OVI}) M_{\odot}$ $\frac{M_{Carbon}}{M_{Carbon}} \gtrsim 1.2 \times 10^6 (0.3/f_{CIV}) M_{\odot}$

Gas and Metal Recycling of the CGM

Nearly all the mass traced by HI is COOL

High Ion Kinematics

Tumlinson+11

Bordoloi+14

3 Decades of High lons

Tumlinson+11

3 Decades of High lons

So What Actually Happened: Quenching?

Not Exactly!!!

Thom+12 Bordoloi+15 in prep

Conclusions

• HI is ubiquitous— Uniformly distributed for all galaxies!

• The CGM harbors at least as much metal as is in the ISM of the galaxies (or more).

• Most of the CGM gas is bound and will be recycled for future star formation.

• Quenching suppresses, but does not completely destroy the CGM of their host galaxies.

log M_{*} [M_{enn}]

A Front Row Seat to Study Outflows...

The Milky Way

UV-bright targets in GC region

AGN sight lines (COS, N=22) Stars @ d>7 kpc (STIS, N=10) Stars @ d<7 kpc (STIS, N=5)

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

PI Fox, 49 Orbits

Kinematically Mapping the Northern Fermi Bubble

Stars @ d<7 kpc (STIS, N=5)

Stay Tuned...