Illuminating the IGM with quasar-induced Ly α emission

Sebastiano Cantalupo ETH Zurich 🏼 🗐 muse

In collaboration with: Simon Lilly (ETH), Elena Borisova (ETH), J. Xavier Prochaska (UCSC), Sammy B. Slug (UCSC), Piero Madau (UCSC), Fabrizio Arrigoni-Battaia (MPIA), Joe Hennawi (MPIA), Martin Haehnelt (IoA)

Sebastiano Cantalupo - IGM@50 - June 2015

Talk Outline

Introduction: detecting the IGM in Emission

Pilot VLT/FORS Survey

The Keck/Gemini NB Survey (FLASHLIGHT)

The IGM/CGM in 3D with MUSE (GTO Survey)

Open questions/Summary

Key Questions

Sebastiano Cantalupo – IGM@50 - June 2015

Detecting Cosmic Gas

"Classical" approach: in absorption.

- pro: ability to detect low-density gas including metals.
- con: typically only 1D information (or sparse 2D)
 LLS/DLAS = "Dark" galaxies? Filaments? IGM? CGM?
 ... difficult to say without direct detection.

Direct detection *in emission*: **Fluorescent Ly***α* (Hogan & Weymann 1987;Gould & Weinberg 1996; Zheng & Miralda-Escude 2005; Cantalupo+05,07; Kollmeier+08, Cantalupo+12)

 Self-shielded gas (slab): "mirror" emission -> ~60% of incident ionizing radiation "converted" to Lyα (but see Cantalupo+05).
 Fully ionized gas: proportional to gas density squared.

How bright is fluorescent emission: simulations

- 40Mpc³ (10Mpc³ high-res) hydro-simulation (RAMSES) around 3×10^{12} M_{sun} halo at z=2.5
- Star formation, SN feedback, on the fly UVB Self-shielding.
- Post-processed with 3D Radiative Transfer Code **RADAMESH** (Cantalupo & Porciani 2011) for ionizing and Lyα radiation.

Simulated Ly α images

UVB fluorescence

Cantalupo+12

Very Large Telescope (VLT) Pilot Survey

- Deep Narrow-Band (NB) and continuum imaging around a QSO @ z=2.4
 - Custom-built filter (FWHM=4nm) using QSO systemic redshift (OIII line)
 - Deepest NB ever taken at VLT: 21 hours (+6h V-band, +1h B-band)
 - NB flux limit: \sim 4x10⁻¹⁸ erg/s/cm² [5 σ for 1 arcsec² aperture]

Cantalupo, Lilly & Haehnelt 2012

"Dark" Galaxies - a selection (EW>240A, no continuum)

Cantalupo+12

Sebastiano Cantalupo – IGM@50 - June 2015

Dark Galaxies: Gas Mass and Star Formation Efficiency

from NB: Inferred (cold) Gas Mass: ~10⁹ M_{sun} from V-band Stack: SFR<0.01 M_{sun}/yr

SF Efficiency: <10⁻¹¹ yr ⁻¹ (gas consumption time >100 Gyr)

Where are they on the Kennicutt-Schmidt relation?

Extended objects: CircumGalactic Medium in emission

Ongoing Fluorescence Surveys [~200h + MUSE GTO]

FLASHLIGHT: Keck ang Gemini NB survey [at z~2] (Cantalupo, Prochaska, Arrigoni-Battaia, Hennawi, Madau)

targets: 26 bright SDSS QSOs at z~2, custom-built NB filters (4)
Data collected so far: 3 QSOs (deep) + 5 (medium-deep) on Keck/LRIS 3 QSOs (deep) + 15 QSOs (shallow) on GMOS

 $1\sigma \sim 5-8 \times 10^{-19} \text{ cgs}/\text{arcsec}^2$ (deep)

MILES3D: MUSE Intergalactic Line Emission Survey in 3D at [z~3] (GTO) (Cantalupo, Lilly, Borisova, Marino, Gallego + MUSE GTO Team)

- targets: "pre-imaged" QSO fields + brightest QSOs at z>3
- Data collected so far: 3 deep exposures (9h) on "pre-imaged" fields 15 QSO snapshot fields (1h)

 $1\sigma \sim 1-3 \times 10^{-19} \text{ cgs}/\text{arcsec}^2$ (deep)

long term goal: 80h on Quasar Field reaching $1\sigma \sim 3-5 \times 10^{-20} \text{ cgs}/\text{ arcsec}^2$

FLASHLIGHT: First Keck/LRIS results

NB imaging of a bright, radio-quiet quasar @ z=2.27 10h NB, 10h V-band (parallel) 1h B, 1h R (parallel)

Cantalupo+, Nature, 2014

FLASHLIGHT: First Keck/LRIS results

Keck/LRIS Low-Resolution Spectroscopic Follow-up

- kinematically "quiet": FWHM<500km/s (vs. >1000km/s of RadioGalaxies!)

Sebastiano Cantalupo – IGM@50 - June 2015

Inferring the cold gas content of the Slug Nebula: 2 cases

Sebastiano Cantalupo - IGM@50 - June 2015

Comparison with simulations: more IGM "clumps" needed!

FLASHLIGHT: First Keck/LRIS results

2) NB imaging of a "quasar pair" field at z=2.0 from Hennawi+13 3h NB, 3h V-band (parallel)

Sebastiano Cantalupo – IGM@50 - June 2015

FLASHLIGHT/Keck: other preliminary results

Other observed fields so far are also rich in Lya-Slugs (but not around target QSOs) and Dark Galaxies.

Some interesting examples:

>120kpc Lya-Slug around g~21 source at 1' from QSO with possible outflow signatures (AGN?)

Spatially resolved Dark Galaxy with EW>300A

Cantalupo+, in prep

3D! with MUSE

MUSE-VLT: "Reality"

- @Paranal Since 2014
- Commissioning Feb-Jun 2014
- 5yr Guaranteed Time Obs.(~250 nights) started in Sep 2014.

MUSE-VLT: Concept

- 1'x1' Integral Field Unit (image slicer)
- 24 Spectrographs
- 370 million pixels per exposure!
- 480nm-950nm range (3<z<6.5 for Ly-alpha)
- 1.25Å x 0.2" x 0.2" voxels
- high efficiency (58% peak)

MILES3D Deep Fields: the Hammerhead Nebula

Cantalupo+, in prep.

MILES3D Deep Fields: the Bulb Nebula

nuse

MILES3D Deep Fields: the Bulb Nebula

MILES3D Deep Fields: Extended Hell emission from the Slug

Sebastiano Cantalupo – IGM@50 - June 2015

MILES3D Deep Fields: Extended Hell emission from the Slug

Sebastiano Cantalupo - IGM@50 - June 2015

What sets the frequency of giant bright Nebulae around quasars? (Lifetime, opening angle, quasar multiplicity,...)

What is the origin of the IGM/CGM clumps traced by the Nebulae? (various instabilities, quasar radiation effects,...)

How this affects galaxy and QSO formation? (fast gas accretion, violent disk instability,...)

More than one component in the Slug Nebula?

HeII+H α +metal emission suggests a large structure in projection (>3Mpc). (See C.Martin talk for another possibility)

Summary

New technique to "illuminate" cosmic gas at high-z with the help of QSOs.

 \square NB and IFU surveys ongoing on Keck/Gemini and with MUSE:

- Dark Galaxy candidates
 Compact and dense gas clouds (~10⁹ M_{sun}) with extremely low
 SF efficiency: <10⁻¹¹ yr⁻¹ (gas consumption rate >100 Gyr).
- Circum-Galactic filaments in emission Morphology and size compatible with "cold streams".
- Intergalactic Filaments ~200-500 kpc size
 Morphology compatible with "Cosmic Web". More cold/neutral gas than expected: ~10¹² M_{sun} or dense clumps needed. Tension with models - missing physics?

Next Future:

- Ultradeep MUSE fields (GTO) at z>3
- Lya + Ha high-resolution spectroscopy of the
- z~2 Keck fields (LRIS + KCWI + MOSFIRE).

