## Star Formation in dwarfs and outer regions

Bruce G. Elmegreen

IBM T.J. Watson Research Center, NY



IC10, Ashley +14

# Overview

- SF in local dwarf irregulars (Elmegreen & Hunter 2015)
  - 3D SF without Q regulation
  - outer disk SFR too slow to need accretion
- CO at low metallicity (Rubio, Elmegreen, Hunter, Brinks, et al. 2015)

• TBD

• Observed accretion in local dwarfs: starbursts & GCs (LITTLE THINGS: Ashley +14, Johnson +12)



EH12



Using V<sub>rot</sub> for  $\kappa$ ,  $\Sigma_{gas}$ ,  $\sigma_{gas}$ ,  $\Sigma_{star}$ ,  $\sigma_{star}$  for radial annuli in 20 galaxies:

 $Q_{gas}$  and  $Q_{star} >>1$ 

Two fluid effective Q = 1/ ( $1/Q_{gas} + 1/Q_{star}$ ) >>1

 $\Sigma_{\rm gas}$  /  $\Sigma_{\rm crit}$  << 1

→ SF pervasive and normal-looking without Q ~ 1-2 as in spirals.
 → SF & Q do not self-regulate to make Q ~ 1-2 everywhere



Scale height H: vertical equilibrium with gas, stars & disk DM (Narayan & Jog 02)

Thick disks: H/Radius ~ 0.6; H/R<sub>epicycle</sub> ~ 4, make dIrrs even more stable.

 $\rightarrow$  dIrrs have thick disks



KS in dwarfs like outer parts of spirals. This the  $H_2$  to HI transition, but more...

Red slope 1.06pm0.04 Green slope 1.61pm0.58



→ the quadratic KS region is also where  $\Sigma_{gas} > \Sigma_{stars}$ , HI>>H<sub>2</sub>, and also where the <u>disk flares</u>



Schruba +11: CO observed in the far-outer regions by stacking.  $\Sigma_{SFR} \sim \Sigma_{CO}^{-1}$ ;  $\Sigma_{SFR} \sim \Sigma_{HI}^{-2}$   $\rightarrow$  Molecular fraction, CO/HI  $\sim \Sigma_{SFR}^{-1/2} \sim \Sigma_{HI}$ (same for LMC – see Bolatto et al. 2011)





 $\Sigma_{\rm SFR}/(\Sigma_{\rm gas}/\tau_{\rm ff}) = \varepsilon_{\rm ff} \sim 1\%$  on <u>average</u> for all regions In <u>detail</u>,  $\varepsilon_{\rm ff}$  (R) follows an exponential:

 $\epsilon_{\rm ff}(R) \simeq \exp(-0.5R/R_D)$ 



 $n_{gas} \sim exp(-R/R_D)$   $\Sigma_{gas} \sim exp(-0.5R/R_D)$   $H_{gas} \sim exp(0.5R/R_D)$ 

 $\epsilon_{\rm ff}(R)$  and  $\Sigma_{\rm gas}$  both follow exp(-0.5R/R<sub>D</sub>) for the 20 dIrr

So  $\varepsilon_{\rm ff}$  (R) follows  $\Sigma_{\rm gas}$  (R) like the CO/HI in Schruba +11, Bolatto +11

 $\rightarrow \epsilon_{\rm ff}$  may be related to the molecular fraction



The far-outer parts of our 20 dIrr galaxies:

-  $\Sigma$ (HI) ~ 0.1 M<sub>O</sub>/pc<sup>2</sup> (=0.1 $\Sigma$ <sub>DLA</sub>) ; n(HI)~10<sup>-3</sup> cm<sup>-3</sup> (R<sub>HII</sub> ~30 kpc for O5 \*)  $\tau_{\rm ff}$  ~ 1 Gyr so  $\tau_{\rm ff}/\epsilon$  ~ 100 Gyr  $\rightarrow$  no need for accretion to feed outer disk SF

 $\rightarrow$  no evidence for gas/star accumulation in outer exponential

#### Summary for the 20 dIrr:

1. Q not regulated by SF feedback; high Q does not stop SF.

2.  $\Sigma_{\rm SFR} \sim \Sigma_{\rm gas}^2$  because gas (HI) dominates mass and the disk flares

- 3.  $\Sigma_{SFR} = \varepsilon_0(R)\Sigma_{gas}/\tau_{ff}$  where  $\varepsilon_0$  may scale with the CO/HI fraction
- 4. Outer parts have  $\tau_{depl}$  ~100 Gyr and don't need accretion

## Accretion in Local Dwarfs



#### Accretion onto the local (0.7 Mpc) dwarf starburst, IC 10

Ashley, Elmegreen, Johnson, Nidever, Simpson, Pokhrel 2014



VLA, Ashley +14



VLA, Ashley +14



VLA, Ashley +14









Ashley +14



### Summary for IC 10:

M<sub>dyn</sub> = 2.6x10<sup>8</sup> M<sub>o</sub> (Oh, et al. 2015)

Northern filament: M(HI)= $6x10^5$  M<sub>o</sub>,  $\Delta v=15$  km/s, L=7 kpc

- $dM/dt = MV/L = 0.001 M_{o}/yr$
- time to finish, 0.6 Gyr

Southern plume  $10^7 M_0$ ,  $\Delta v \approx 30 \text{ km/s}$ , L $\approx 7 \text{ kpc}$  (assume like N.)

- $dM/dt=0.05 M_0/yr$
- time to finish 0.2 Gyr

Whereas SFR =  $0.08 M_{o}/yr$ 

→ accretion-fed star formation with local turbulent enhancement, lasting for the next 1/2 Gyr



NGC 1569, HST







Johnson +12

# Summary:

In local dIrrs, Q is not important for SF, even though SF is still a gravitational process, operating as  $\epsilon(R)\Sigma_{gas}(R)/\tau_{ff}(R)$  in three dimensions - Q is for thin disks and relevant to spirals

All quantities,  $\epsilon$ ,  $\Sigma_{\rm gas}$ ,  $au_{
m ff}$ , and  $\Sigma_{
m SFR}$ , in dIrr vary smoothly with R

- no sharp threshold where the ISM converts from  $H_2$  to HI
- gas dominates stars, and the disk flares continuously

The outer regions of dIrrs do not need accretion to feed SF ( $\tau_{dep} = \tau_{ff}/\epsilon$  ~100 Gyr) and there is no evidence for accretion as excess gas above the exponential

WLM : TBD

Accretion in IC10 feeds the starburst; in NGC 1569 it triggered two SSCs - young metal-poor dwarfs may have formed metal-poor GCs by accretion-induced SF