Gas flows at the interface between galaxies and IGM

Filippo Fraternali

Department of Physics and Astronomy, University of Bologna, Italy Kapteyn Astronomical Institute, University of Groningen, NL

Lucia Armillotta, Antonino Marasco, Federico Marinaci, James Binney

Filippo Fraternali (Bologna/Groningen)

3 points

0. Gas accretion is very important

1. There is a lot of cold extraplanar gas around spirals

2. Galactic fountain cools the corona: Feedback <u>is not</u> only *negative*

3. Build artificial data

Cold extraplanar gas

Filippo Fraternali (Bologna/Groningen)

NGC 891

Large amount of extraplanar HI

Hodges-Kluck & Bregman 2013, ApJ

 $Mass_{hot} = 1-3 \times 10^8 M_{\odot}$ Z (HI) ~ 0.1 Z_{\odot}

Extraplanar HI rotates slowly

Filippo Fraternali (Bologna/Groningen)

Superbubble outflows

Filippo Fraternali (Bologna/Groningen)

Photoionised gas

Diffuse ionized gas:

H α image of NGC 5775

Filippo Fraternali (Bologna/Groningen)

Extraplanar gas in the Milky Way

Filippo Fraternali (Bologna/Groningen)

Extraplanar HI – all-sky

Galactic latitude

Extraplanar HI mass = $3 - 4 \times 10^8 M_{\odot}$ Rotational gradient: 15 km/s/kpc Marasco & Fraternali 2011, A&A

10% of the HI in the MW is out of hydrostatic equilibrium!

Galactic fountain models

Filippo Fraternali (Bologna/Groningen)

Disc-corona interplay

Interface layer where disc - and coronal materials mix

> Requires high-resolution hydrodynamical simulations

Fraternali & Binney 2008, MNRAS Marinacci, et al. 2010, 2011, MNRAS Marasco, Fraternali & Binney 2012, MNRAS

Filippo Fraternali (Bologna/Groningen)

Fitting the extraplanar gas

Filippo Fraternali (Bologna/Groningen)

Extraplanar HI in the Milky Way

Marasco, Fraternali & Binney, 2012

Filippo Fraternali (Bologna/Groningen)

Extraplanar HI in the Milky Way

Filippo Fraternali (Bologna/Groningen)

New high resolution simulations

Filippo Fraternali (Bologna/Groningen)

The effect of thermal conduction

Filippo Fraternali (Bologna/Groningen)

Conclusions

• There is a lot of extraplanar cold gas

• The fountain circulates ~10 M_{\odot} /yr and cools ~1 M_{\odot} /yr of low-metallicity gas in the inner disk

• Hot-mode feeds the corona, fountain mode feeds the disk: only late-types keep accreting

• At z<1 galactic fountain drives star formation

Filippo Fraternali (Bologna/Groningen)