Molecular gas ram pressure stripping and inefficient intra cluster SF

Pavel JÁCHYM

(Czech Academy of Sciences, Prague) J. Kenney (Yale), M. Sun (Huntsville), F. Combes (ObsPM), L. Cortese (Swinburne), J. Palous (CAS), et al.

Evolution of galaxies in clusters

- dense environments of galaxy clusters and groups have been identified as places where transformations of galaxies from blue gas-rich to red gas-poor systems occur
- ram pressure of the intra-cluster medium (ICM) can efficiently remove star-forming cool ISM reservoirs from infalling galaxies (Gunn & Gott 1972) and thus cause sudden quenching of SF, while not affecting their stellar disks
- in Virgo cluster, the closest rich galaxy cluster, a number of clearly RP stripped galaxies have been observed with
 - truncated gas disks with normal stellar disks; removal of gas from outside in
 - quenched star formation
 - extra-planar, one-sided features, mostly HI

Virgo cluster – closest RPS laboratory many HI-deficient galaxies MGC 4396

NGC 4522 HI on R

40 3 RIGHT ASCENSION (J200

VIVA survey, Chung et al. (2009)

Pavel Jachym @ IGM@50

Ram pressure stripping

• Gunn & Gott (1972): ISM element is stripped from galaxy when ram pressure of the intra-cluster medium (ICM) exceeds the gravitational restoring force of the galaxy:

 $\rho_{\rm ICM} v^2 > \Sigma_{\rm ISM} \, d\Phi/dz$

- HI is expected to be more easily stripped than dense (molecular) clouds, and stars are not affected at all
- RPS is (at least partly) responsible for cluster spirals in green valley and red sequence due to <u>quenching of</u> <u>star formation</u>
- RPS can completely strip dwarf galaxies and partially large spirals in ~10¹⁴ M_{sun} (Virgo-like) clusters
- RPS can completely strip massive galaxies in ~10¹⁵ M_{sun} (Coma-like) clusters
- Starvation = removal of gas halo (outer disk) reservoir by either tidal or RP stripping => no supply of gas into inner disk

Where is the stripped gas?

- most of the ISM missing in Virgo galaxies is not revealed in observations, e.g. Vollmer & Huchtmeier (2007); Kenney et al. (2014) + Jachym et al. (2013) : dwarf galaxy IC3418
- the bulk of the stripped atomic gas must have been transferred to another phase
- one-sided tails in other wavelengths revealed, such as Hα or X-rays
 - in Virgo only few: e.g. NGC4388 or IC3418 (Oosterloo & van Gorkom 2005; Hester et al. 2010)
 - many in more massive clusters with higher ICM pressure (Gavazzi et al. 2001; Cortese et al. 2006, 2007; Sun et al. 2007; Yagi et al. 2007; Yoshida et al. 2004, 2008; Kenney et al. 2008; Fossati et al. 2012; Wang et al. 2004; Finoguenov et al. 2004; Machacek et al. 2005; Sun & Vikhlinin 2005; Sun et al. 2006, 2010)
- mixing of the stripped cold ISM with the hot ICM produces multi-phase gas. Prominent soft X-ray emission may be produced, as well as H α emission.
- Star-forming RPS tails discovered (Cortese et al. 2006; Sun et al. 2007; Yoshida et al. 2008; Smith et al. 2010; Hester et al. 2010; Yagi et al. 2013; Ebeling et al. 2014)

Norma cluster: ESO137-001

- Norma cluster (A 3627) nearest (z=0.016, D≈70 Mpc) rich cluster
- ESO 137-001: M_{*}~1x10¹⁰ M_{sun}
- infalling for the first time to the cluster center at a high orbital speed, mostly in the plane of the sky
- the most dramatic gas stripped tail of a late-type galaxy ever observed
- <u>multi-phase gas tail:</u>
 - Chandra and XMM-Newton show a 80 kpc, narrow, double-structure tail
 - 40 kpc Hα tail
 - more than 30 giant discrete H II regions
 - H I only to upper limit (ATCA)

Sun et al. (2007, 2010)

Norma cluster: ESO137-001

7

6/12/15

Pavel Jachym @ IGM@50

Searching for molecular gas

- ESO APEX
 - 12 m antenna
 - 5600 m elevation
 - CO(2-1), CO(3-2)

- IRAM 30m
 - 30 m antenna
 - 2600 m elevation
 - CO(1-0), CO(2-1)

Searching for molecular gas

First time detection of a prominent molecular RPS tail! The presence of cold gas is surprising

Gas phases in the stripped tails

- > $10^9 M_{\odot}$ of H₂ revealed in the tail
- largest amount found in the inner tail
 - direct stripping of dense gas?
- - in-situ molecular gas formation
- $\sim 10^9 \ M_{\odot}$ of hot (~ $10^7 \ K$) X-ray gas
- $< 5 \times 10^8~M_{\odot}$ of HI per 30" beam with ATCA
- < 5 \times 10 $^8\,f^{1/2}~M_{\odot}$ of ionized, H α -emitting diffuse gas
- Spitzer revealed ~ $4\times10^7~M_{\odot}$ of warm (130– 160 K) $\rm H_2$ in the galaxy and inner 20 kpc tail
- total gas mass in the tail: 2 \times 10 7 M_{\odot} < M_{gas} < 4 \times 10 9 M_{\odot}
- total gas mass in the disk: $\sim 1 \times 10^9 M_{\odot}$
- original (pre-stripping) gas content ~ (0.5–1) × $10^{10}~M_{\odot}$

- There are large and similar amounts of cold and hot gas that together nearly account for the missing gas from the disk
- Our observations show for the first time that H_2 , $H\alpha$, and X-ray emission can be at observable levels in a single ram- pressure-stripped tail

Origin of molecular gas in the tail

- Large fraction of stripped ISM can cool down and turn molecular in-situ H₂ formation
 - strong ram pressure may push/strip rather dense gas clumps
 - these can transform more readily into molecular gas than stripped diffuse gas (the density of the stripped gas determines the timescale for condensation and H₂ formation following an inverse relation; Guillard et al. 2009)
 - higher-density clumps can then radiatively cool down more easily and eventually form molecular gas, while the low-density stripped phase is compressed by the ICM, starts to mix with it, and likely accounts for the X-ray emitting hot gas in the tail (Tonnesen et al. 2011)
- Can some stripped gas survive in the molecular phase? direct stripping of H_2
 - absence of UV photo- dissociating radiation & effects of magnetic fields
 - could contribute to the unprecedented CO brightness of the gas stripped tail of the galaxy, especially in its inner parts
- In ESO137-001 possibly combination of both: H₂ revealed in the outer tail is more likely to originate from in situ transformation of stripped diffuse atomic gas
- dust is crucial for H2 formation *Herschel* revealed a dust trail
 - dust ram pressure stripping studied by Abramson & Kenney

Very low star formation efficiency in the special environment of a RPS tail

- low and decreasing SFE along the tail
- Star formation timescale (=1/SFE) = M(HI+H₂)/SFR is 2-50x longer in stripped gas than in disks
- most of stripped gas does not form stars but remains gaseous and ultimately joins the ICM
 - low average gas density in the tail?
 - turbulent heating induced by RP shock?
- distinctly different conditions from typical star-forming ISM in inner parts of nearby galaxies
- Similarly low SFEs found in outer disks where however HI is likely dominant and CO mostly undetected

Jachym et al. (2014)

RP dwarf galaxy in formation?

- IC region at 40kpc with ~ 1.5 x 10^8 M_{\odot} of H_2
 - young
 - has been formed by condensation of pre-enriched matter that belonged to a parent galaxy
 - it is now (probably) decoupled
 - it <u>may be gravitationally</u> bound
- a ram pressure dwarf galaxy (RPDG) forming?
- while in TDGs a typical molecular gas fraction is ~20%, in an RPDG H₂ is likely the dominant gas phase
- Needs more detailed observations to determine total mass, kinematics, and especially self-gravitation

Molecular gas fraction vs. local ICM pressure in the tail

 $R_{H2} = \Sigma_{H2} / \Sigma_{HI}$, as a function of midplane pressure in observations of nearby galaxies (squares – Blitz & Rosolowsky 2006; diamonds – Leroy et al. 2008) and theoretical predictions of Krumholz et al. (2009, plus signs)

- ICM thermal (+ ram) pressure at the location of ESO 137-001 in the Norma cluster is similar to midplane gas pressures that occur in the (inner) disks of galaxies
- lower limits on the molecular-toatomic gas ratio in the tail of ESO 137-001 (corresponding to our APEX detections and the ATCA H I upper limits) are consistent with values measured in galactic disks
- nevertheless, the star formation efficiency in the tail is much lower than in the galaxies
- This could be due to a low average gas density in the tail, or turbulence driven from interaction with the surrounding ICM

How common is the presence of H₂ in RPS tails?

- D100 in Coma
 - $M_* = (1 7) \times 10^9 M_{\odot}$ post-starburst galaxy
 - core starburst and extended Hα connected to core
 - ~ 240 kpc from cluster center
 - multiphase RPS tail:
 - 60 kpc Hα tail shows substructure and bifurcation
 - 48 kpc X-ray tail
 - GALEX 15 kpc UV tail

How do gas phases in RPS gas tails correlate?

Jachym+(in prep.)

Near future prospects

- Build up the database search for molecular gas in many more RPS galaxies (IRAM, APEX, ...)
- High-resolution observations with NOEMA (upcoming) and ALMA (hopefully upcoming) will let us better understand local physical conditions – effects of cooling, in-situ formation of molecular gas and SF, mixing of stripped cool gas with the surrounding ICM
- RPS tails are unique laboratories where stars may form in completely different environments than in galactic disks

Conclusions

- First detections of abundant H₂ in RPS tails including distant, IC regions
- \succ First observations of RPS tails seen in X-rays, H α , and H₂
- \blacktriangleright We believe H₂ tails are a widespread phenomenon
- Unified model of RPS: multi-wavelength observations of RPS tails all sample the same stripped ISM that mixes with ICM and changes phases
- Our observations are consistent with numerical simulations that have suggested that ICM pressure strongly affects the formation of X-ray emission and star formation (Tonnesen & Bryan 2010, 2012; Kapferer et al. 2009)