Mapping the z > 2 Cosmic Web with 3D Ly α Forest Tomography IGM@50 Conference, Spineto, Italy

Khee-Gan ("Just call me K.-G.") Lee

Max Planck Institut für Astronomie, Heidelberg

June 8, 2015

Collaborators: Joe Hennawi (MPIA), Martin White (Berkeley), Xavier Prochaska (UCSC), Casey Stark (Berkeley), David Schlegel (LBNL), Nao Suzuki (IPMU), COSMOS collaboration

K.G. Lee Ly Forest Tomography

Mapping the Cosmic Web wth Galaxy Redshift Surveys

Ability to map LSS depends on the average galaxy separations, e.g. SDSS Main Galaxy Sample ($z \le 0.3$) has average galaxy separation ~ 8 h⁻¹ Mpc. At z = [0.5, 1.0, 2.0], need to go to I $\approx [22.5, 24.2, 25.7]$ to reach same separation.

24 deg² VIPERS Survey on the ESO VLT, Guzzo et al 2014

K.G. Lee Ly Forest Tomography

< ロ > < 同 > < 三 > < 三

Mapping the Cosmic Web wth Galaxy Redshift Surveys

Ability to map LSS depends on the average galaxy separations, e.g. SDSS Main Galaxy Sample ($z \le 0.3$) has average galaxy separation $\sim 8 \,h^{-1}$ Mpc. At z = [0.5, 1.0, 2.0], need to go to I $\approx [22.5, 24.2, 25.7]$ to reach same separation.

 $24\,deg^2$ VIPERS Survey on the ESO VLT, Guzzo et al 2014

Direct mapping of z > 1 LSS with galaxy redshifts only feasible with 30m telescopes!

K.G. Lee Lya Forest Tomography

< < >> < <</p>

Lyman- α Forest as Probe of z > 2 Universe

Restframe 1215.67 Å Lyman- α absorption caused by neutral hydrogen in front of background QSO. This transition redshifts into optical wavelengths at z > 2.

We observe the transmitted flux $F = f/C = exp(\tau)$ caused by optical depth τ . This absorption is seen over ~ 300 - 500 Mpc along the quaar line-of-sight before Ly β kicks in.

K.G. Lee Ly Forest Tomography

・ 同 ト ・ ヨ ト ・ ヨ ト

$Ly\alpha$ Forest as a Probe of the Cosmic Web

In the modern 'fluctuating Gunn-Peterson' model, the Ly α absorption traces the quasi-linear matter overdensity, $\Delta \equiv \rho_{dm}(x)/\langle \rho_{dm} \rangle$, probing the range $0 \gtrsim \Delta \gtrsim 10$. This is modulated by IGM astrophysics

$$\tau(x) \propto \frac{T_0^{-0.7}}{\Gamma} \Delta(x)^{2-0.7(\gamma-1)}$$

- ► IGM temperature at mean density, T₀
- UV background ionization rate, Γ
- Temperature-density relationship, γ (where T(Δ) $\propto \Delta^{\gamma-1}$)

Credit: AmSci/R. Simcoe

K.G. Lee Lya Forest Tomography

$Ly\alpha$ Forest as a Probe of the Cosmic Web

In the modern 'fluctuating Gunn-Peterson' model, the Ly α absorption traces the quasi-linear matter overdensity, $\Delta \equiv \rho_{dm}(x)/\langle \rho_{dm} \rangle$, probing the range $0 \gtrsim \Delta \gtrsim 10$. This is modulated by IGM astrophysics

$$\tau(x) \propto \frac{T_0^{-0.7}}{\Gamma} \Delta(x)^{2-0.7(\gamma-1)}$$

- ► IGM temperature at mean density, T₀
- UV background ionization rate, Γ
- Temperature-density relationship, γ (where T(Δ) $\propto \Delta^{\gamma-1}$)

In this talk, I assume that the Lyx forest traces large-scale structure **not** 'gas'!

K.G. Lee Ly Forest Tomography

Ly α Forest Tomography

Collection of closely-separated sightlines enable tomographic reconstruction of 3D absorption field on scales comparable to sightline separation (Pichon et al 2001, Caucci et al 2008, Lee et al 2014)

Credit: Casey Stark (Berkeley)

K.G. Lee Ly Forest Tomography

Source separation vs map resolution

The sightline separation, $\langle d_{\perp}\rangle$, is the basic consideration for IGM tomography. For maps with 3D resolution ε_{3D} , expect to need $\langle d_{\perp}\rangle\lesssim\varepsilon_{3D}.$

K.G. Lee Ly Forest Tomography

イロト 不得 とくほと くほとう ほ

LBGs as $Ly\alpha$ Forest Background Sources?

QSO luminosity function (Palanque-Delabrouille +2013) rises too slowly to provide sufficient background sources to sample the Ly α forest.

With LBGs, exponential increase of source density, $n_{los} \propto 10^{m}$. Source separation is $\langle d_{\perp} \rangle \sim 2.5 \ h^{-1}$ Mpc at $g \leqslant 24.5$.

K.G. Lee Ly Forest Tomography

High-Resolution Spectrum of a Lensed LBG

The z=2.724 LBG MS 1512-cB58 is lensed (~ 50×) to V ~ 20.6

K.G. Lee Ly Forest Tomography

Observational Requirements for Ly α Forest Tomography

LBGs are much fainter than QSOs ($m \sim 24$), so it was assumed that 30m-class telescopes would be required for tomography, but never any detail analysis of requirements.

In Lee et al 2014a (ApJ 788, 49), I argued using sims and analytic calculations:

- \blacktriangleright No need to resolve individual Ly α absorbers: $R \sim 1000$ is adequate
- $S/N \sim 3-4$ per Å is sufficient at the survey limit
- ▶ At reconstruction scales of $\varepsilon_{3D}>2\,h^{-1}$ Mpc, still in shot-noise limited regime so $\langle d_{\perp}\rangle < \varepsilon_{3D}$ is helpful

K.G. Lee Lya Forest Tomography

(日) (同) (目) (日) (日) (の)

Simulated Tomographic Reconstructions

Reconstructions using mock spectra with realistic sampling and spectral S/N. Transverse maps smoothed on $\sigma=3.5\,h^{-1}$ Mpc scale (left to right):

$$\circ \ \ n_{\text{los}} = 971 \text{deg}^{-2} \text{, } \ t_{\text{exp}} = 8 \text{hrs}$$

$$\circ$$
 $n_{los} = 657 deg^{-2}$, $t_{exp} = 6 hrs$

$$\circ$$
 $n_{\mathsf{los}} = 112 \mathsf{deg}^{-2}$, $\mathrm{t_{exp}} = 2\mathsf{hrs}$

(Exposure times assuming VLT VIMOS spectrograph)

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

K.G. Lee

Ly α Forest Tomography

Pilot Observations on Keck, March 2014

Observing run with LRIS spectrograph on 10m Keck-I telescope, Hawai'i. Suffered ~ 70% weather loss, but from 4hrs on-sky obtained 24 LBG spectra at 2.3 < z < 2.8

K.G. Lee Lya Forest Tomography

COSMOS/CANDELS/3D-HST Field

K.G. Lee Lyα Forest Tomography

Tomographic Reconstruction

We now have extracted transmission $\delta_F = F/\langle F \rangle - 1$ ('data'), pixel noise estimates σ_F , and [x, y, z] positions. Perform Wiener filtering on these inputs to estimate the map:

$$\mathbf{M} = \mathbf{C}_{\mathsf{M}\mathsf{D}} \cdot (\mathbf{C}_{\mathsf{D}\mathsf{D}} + \mathbf{N})^{-1} \cdot \mathbf{D}$$

The noise term provides some noise-weighting to the data. We assume Gaussian correlation function in the map, where $C_{DD} = C_{MD} = C(\mathbf{r}_1, \mathbf{r}_2)$, and

$$\mathbf{C}(\mathbf{r_1}, \mathbf{r_2}) = \sigma_F^2 \exp\left[-\frac{(\Delta r_{\parallel})^2}{2L_{\parallel}^2}\right] \exp\left[-\frac{(\Delta r_{\perp})^2}{2L_{\perp}^2}\right], \quad (1)$$

with $L_{\perp}=3.5h^{-1}$ Mpc and $L_{\parallel}=2.7\,h^{-1}$ Mpc, and $\sigma_F=0.8.$

K.G. Lee Ly Forest Tomography

Tomographic Reconstruction

We now have extracted transmission $\delta_F = F/\langle F \rangle - 1$ ('data'), pixel noise estimates σ_F , and [x, y, z] positions. Perform Wiener filtering on these inputs to estimate the map:

$$\mathbf{M} = \mathbf{C}_{\mathsf{M}\mathsf{D}} \cdot (\mathbf{C}_{\mathsf{D}\mathsf{D}} + \mathbf{N})^{-1} \cdot \mathbf{D}$$

The noise term provides some noise-weighting to the data. We assume Gaussian correlation function in the map, where $C_{DD} = C_{MD} = C(\mathbf{r}_1, \mathbf{r}_2)$, and

$$\mathbf{C}(\mathbf{r_1}, \mathbf{r_2}) = \sigma_F^2 \exp\left[-\frac{(\Delta r_{\parallel})^2}{2L_{\parallel}^2}\right] \exp\left[-\frac{(\Delta r_{\perp})^2}{2L_{\perp}^2}\right], \quad (1)$$

with $L_{\perp}=3.5h^{-1}$ Mpc and $L_{\parallel}=2.7\,h^{-1}$ Mpc, and $\sigma_F=0.8.$

Super-efficient implementation by Casey Stark (Berkeley), see (arXiv:1412.1507), I just wait 1 min on my laptop....

K.G. Lee Lyα Forest Tomography

First 3D Map of Cosmic Web at z > 2

 $V = (6 \times 14) \ h^{-2} \text{Mpc}^2 \times 230 \ h^{-1} \ \text{Mpc} \approx 1.93 \times 10^4 h^{-3} \text{Mpc}^3 \approx (27 \ h^{-1} \ \text{Mpc})^3$

K.G. Lee Ly Forest Tomography

Pilot Map in Slices

Squares: 18 coeval galaxies (mostly zCOSMOS-Deep) with known spectro-z's within map, error bars are estimated 1σ redshift errors.

K.G. Lee Ly Forest Tomography

< ロ > < 同 > < 回 > < 回 >

Pilot Map in Slices

Overdensities seen in the map are typically probed by multiple independent sightlines

K.G. Lee Ly Forest Tomography

・ロッ ・同 ・ ・ ヨッ・・

Pilot Map in Slices

Hints of a huge overdensity at z=2.43?

K.G. Lee Ly Forest Tomography

< ロ > < 同 > < 回 > < 回 >

A Large Protocluster at z = 2.44?

Credit: Yi-Kuan Chiang (UT Austin)

Color Scale Overdensity of photo-z candidates Stars HETDEX Pilot Survey (Chiang et al, submitted) Squares zCOSMOS spectro-z's from Diener et al 2015

K.G. Lee Ly Forest Tomography

- < 同 > < 三 > < 三 >

A Large Protocluster at z = 2.44?

Color Scale Overdensity of photo-z candidates Stars HETDEX Pilot Survey (Chiang et al, submitted) Squares zCOSMOS spectro-z's from Diener et al 2015

See Yi-Kuan Chiang's poster!

K.G. Lee Lya Forest Tomography

Do Galaxies Live in Overdensities on 3-4 Mpc Scales?

We evaluate the δ_F values at the 18 galaxy positions, and compare with the full map. Bias towards higher overdensities, but also a few in lower-density regions.

This is due to redshift uncertainties in the foreground galaxies + reconstruction errors. More volume + galaxies needed for better measurements!

K.G. Lee Ly Forest Tomography

• • = • • = •

Comparison with Simulations

We took Ly α forest skewers from sims, and created mock data with exactly the same sightline geometry and S/N as real data. We also have positions of DM halos corresponding to R \leqslant 25.5 (abundance-matched)

- There are reconstruction errors, but our data quality should reproduce broad LSS features
- Redshift errors will also scatter galaxies out of overdensities

K.G. Lee Ly Forest Tomography

CLAMATO Survey

(COSMOS Lyman-Alpha Mapping And Tomography Observations)

- Proposed survey targeting 0.8 sq deg of COSMOS field (~ 30 nights on Keck)
- ▶ Target ~ 1000 LBGs at 2.3 $\leq z \leq 3$ for R ~ 1000 spectroscopy $\rightarrow \langle z \rangle \sim 2.3$ LSS map over $10^{6} h^{-3} Mpc^{3} \sim (100 h^{-1} Mpc)^{3}$

Dimensions: $(65 \text{ Mpc})^2 \times (100 \text{ Mpc})$

K.G. Lee

Lyα Forest Tomography

K.G. Lee Lya Forest Tomography

CLAMATO: State of the Union

Keck/LRIS Run 2015 April 16-21: 4 masks targeting z = 2.15 - 2.40 and 1 mask targeting z = 2.09 protocluster

Upcoming large program proposal beginning 2016A.

K.G. Lee Ly Forest Tomography

(人間) シスヨン イヨン

Hunting Protoclusters with $Ly\alpha$ Tomography

Stark, White, Lee & Hennawi (arXiv:1412.1507): studied progenitors of simulated $M>10^{14}M_\odot$ clusters at z=2.5

- Protoclusters are $r \sim 5$ Mpc overdensities in Ly α absorption
- \blacktriangleright CLAMATO will find $M>3\times 10^{14}M_{\odot}$ progenitors with $\sim 90\%$ purity and $\sim 75\%$ completeness $\rightarrow N\sim 5$ in $10^6~h^{-3}Mpc^3$
- Even with known protoclusters, can characterize full 3D morphology, e.g. collapsing along single axis vs more isotropically

K.G. Lee Ly a Forest Tomography

Detecting High-z Voids with CLAMATO

Stark, Font-Ribera, White & Lee (submitted): look for LSS voids with simulated Ly α forest tomography

 $R=11.7\,h^{-1}$ Mpc void, Stark+2015

- Used simple spherical finder: grow spheres around minima until some $\bar{\rho}$.
- ▶ CLAMATO will be able to pick up $R \ge 6 h^{-1}$ Mpc voids with ~ 70% purity and ~ 60% → ~ 100 voids within CLAMATO volume
- Synergy with JWST-NIRSPEC to study sub-L_{*} void galaxies in the $z \sim 2-3$ accretion era?

Voids and Protoclusters in CLAMATO

Right: Central part of COSMOS Field Magenta CLAMATO 0.8 sq deg Orange CANDELS/3D-HST footprint Blue Lee+2014 Pilot field Dots Photo-z and spectro-z z = 2.4 - 3.0 LBG targets

Below: Simulated protoclusters and voids (approx to scale)

Other Science with CLAMATO

- Finding and characterizing high-z protoclusters
- Finding and characterizing high-z voids
- Galaxy Environments: How do high-z galaxy properties (e.g. SFR, metallicity, AGN activity) correlate with their large-scale IGM environment
- Decomposing high-z LSS into filaments, sheets and nodes
- First measurement of LSS topology at z > 2, e.g. genus or Euler characteristics
- Cross-correlating Lyα forest with LBGs and LAEs: first detections of RSD from these population + better bias measurements
- Small-scale 3D power spectrum of the Lyα forest: independent constraints on cosmological parameters e.g. σ₈ and m_ν
- Refining photometric redshifts with tomographic LSS as a prior

Pushing Tomography Towards Smaller Scales

8-10m class telescopes can perform IGM tomography down to scales of

- $\sim 3 4 h^{-1}$ Mpc or $\sim 1.5 2p$ Mpc, too coarse to resolve IGM/CGM interface
- $(\sim 100 \text{pkpc})$. This will require 30m-class telescopes.

Pushing Tomography Towards Smaller Scales

8-10m class telescopes can perform IGM tomography down to scales of $\sim 3 - 4 h^{-1}$ Mpc or $\sim 1.5 - 2p$ Mpc, too coarse to resolve IGM/CGM interface ($\sim 100pkpc$). This will require 30m-class telescopes.

- Right: Exposure time required to achieve different tomographic resolutions with GMT/GMACS
- Different curves are different 'map SNR' (e.g. below) defined by Var(true)/Var(map-true).
- 4hr integrations will push down to 500pkpc scales

K.G. Lee Lya Forest Tomography

Protocluster Galaxies as Background Sources

In addition to studying protoclusters in the foreground, we can also use known protocluster galaxies as background sources for high-resolution tomography in the foreground.

Average source separation of g<25 galaxies is $\langle d_{\perp}\rangle\sim 1.5\,h^{-1}$ Mpc from protocluster sources vs $\langle d_{\perp}\rangle\sim 3-4\,h^{-1}$ Mpc in field.

K.G. Lee Ly Forest Tomography

Detailed IGM Mapping through Protocluster Lines-of-Sight (DIMPLS)

Reconstructions resolving scales of 400kpc, directly detect cosmic web filaments at $z\sim 2.6$

Simulated reconstructions resolving $\epsilon_{3D} \sim 1.5 \,h^{-1}$ Mpc (400pkpc)

Upcoming observations:

- ▶ 35hrs (Priority 'B') on HS1549 with VLT-FORS2
- 6 nights on SSA22 with Keck-DEIMOS

K.G. Lee Ly Forest Tomography

イロト 不得 とくほ とくほ とうほう

Summary

- First exploitation of LBGs as $Ly\alpha$ forest background sources
 - ► Faintest-ever (g ~ 24.5 vs g ~ 21.5 for BOSS) and densest-ever source densities (~ 1000 deg⁻² vs ~ 10 deg⁻² for BOSS)
- First large-scale structure map of the z > 2 universe (from 1/2 night of data!)
- Ongoing CLAMATO survey:
 - Survey ~ 1000 LBGs ($z \sim 2-3$) in 0.8 deg² field
 - \blacktriangleright Will yield 3D Lya forest tomographic map with $\sim 3\,h^{-1}$ Mpc spatial resolution over $\sim (100\,h^{-1}$ Mpc)^3
 - Time requirement: ~ 30 nights on Keck-LRIS (inc weather overhead)
 - Science: cosmic web studies at z > 2, hunting galaxy protoclusters and high-z voids, galaxy properties as function of environment....
- Over the next few years, use protoclusters as background sources to probe IGM-CGM interface before 30m-class telescope come online

All simulation products available at http://tinyurl.com/lya-tomography-sim-data

Continuum Estimation

The Ly α forest transmission F = f/C is observed flux, f, divided by estimated intrinsic 'continuum', C. Fortunately there are few strong absorbers in the Ly α forest region, which we can mask.

We perform 'mean-flux regulation' (Lee et al 2012) using the Berry et al 2012 composite at 1040 - 1190 Å, i.e. adjust amplitude and slope until the resulting $\langle F \rangle$ matches measurements from quasars.

K.G. Lee Ly Forest Tomography

UV spectra of Low-z Starforming Galaxies

