Stability of Cold Gas Streams in Hot Halos

Nir Mandelker, H.U.J.I. IGM@50, June 08, 2015

Collaborators

Dan Padnos, Yuval Birnboim, Avishai Dekel Andi Burkert, Mark Krumholz, John Forbes

The Plan for Today

Cosmological context (Thanks Avishai!)

Linear Theory (or everything you wanted to know about Kelvin-Helmholtz instability and were afraid to ask)

Preliminary Simulations

AMR RAMSES Teyssier, Dekel

box size 300 kpc resolution 30 pc $z \sim 5.0 - 2.5$

Streams feeding a high redshift galaxy

5

The "Messy" Region

In massive halos, streams may breakup due to shocks, hydro and thermal instabilities, collisions between streams and clumps, heating.

Main Question

Do the streams breakup before they reach the galaxy?

Study growth of various instabilities:

Hydrodynamical: Kelvin-Helmholz instability of dense super-sonic jet in hot medium

<u>Thermal:</u> Clumping due to runaway cooling (seeded by KH eddies?)

<u>Gravitational (external):</u> Rayleigh-Taylor instabilities

Gravitational (self): Local Jeans collapse (seeded by KH eddies?)

External shocks:

Richtmyer-Meshkov instabilities in feedback induced shocks

Typical numbers

Stream temperature:

Pressure equilibrium:

 $T_{\rm s} \sim 10^4 - 10^5 \, K$ Surrounding temperature: $T_b \sim T_v \ge 10^6 K \ (M_h \ge 10^{12} M_{\odot})$ $P_b \simeq P_s$

 $\delta \equiv \frac{\rho_s}{2} \simeq 10 - 100$ **Density contrast:** ρ_b $V \simeq V_v \sim \sqrt{\frac{K_B T_{vir}}{m}} \sim C_b$ Stream velocity:

> $M \equiv \frac{V}{C_h} \sim 1 - 1.5$ Mach number:

Stream radius:

 $R_{s} < 10 \ kpc \sim 0.1 \ R_{v}$

Size ratio:

$$\alpha \equiv \frac{R_s}{R_{vir}} \sim 0.01 - 0.1$$

KHI in Planar Geometry

Standard Hydrodynamic Equations

$$\begin{aligned} \frac{D\rho}{Dt} + \rho \, \vec{\nabla} \cdot \vec{v} &= 0 & \rho \frac{D\vec{v}}{Dt} + \vec{\nabla}P &= 0 & \frac{DP}{Dt} - c^2 \frac{D\rho}{Dt} &= 0 \\ \end{aligned}$$

$$\begin{aligned} DP \\ Dt &= c^2 \frac{D\rho}{Dt} &= 0 \\ \end{aligned}$$

$$\begin{aligned} DP \\ Dt &= c^2 \frac{D\rho}{Dt} &= 0 \\ \end{aligned}$$

$$\begin{aligned} P_0 &= const \\ \end{aligned}$$

$$\begin{aligned} P_0 &= const \\ \end{aligned}$$

$$\begin{aligned} P_0 &= const \\ \end{aligned}$$

$$\begin{aligned} P_1, \, \vec{v}_1, \, P_1 & f_1 &= f_1(z) \exp[i(k_x x + k_y y - \omega t)] & \vec{k} \cdot \vec{v}_0 &= cos(\phi) \\ \end{aligned}$$

$$\begin{aligned} Eitenmodes of the Problem \\ P_1, \, \vec{v}_1 \text{ as a function of } \{P_1, \, (\rho_0, \, \vec{v}_0, \, c_0), \, (\omega, \, k)\} & 4 \text{ algebraic equations} \\ \end{aligned}$$

$$P_1'' - \left[\frac{2v_0'}{v_0 - \frac{\omega}{k_x}} + \frac{\rho_0'}{\rho_0}\right] P_1' - k^2 \left[1 - \left(\frac{k_x}{k}\right)^2 \left(\frac{v_0 - \frac{\omega}{k_x}}{c}\right)^2\right] P_1 &= 0 \end{aligned}$$

(1) Incompressible Sheet, KKHI

Kindergardener's

Incompressible : $c_s, c_b \rightarrow \infty$

$$ho_s$$
, $v_s = v$

 ho_b , $v_b=0$

$$t_{KH} = \frac{1+\delta}{2\pi\sqrt{\delta}} \left(\frac{\lambda}{\nu}\right)$$
$$\lambda \simeq R_s \simeq 0.01 R_{\nu}, \qquad \nu \simeq V_{\nu}, \qquad \delta \simeq 100$$

 $t_v \simeq 60 t_{KH}$ **Stream Unstable!** <u>Two complications:</u> 1. Geometry 2. Compressibility

(3) Compressible Sheet

Compressible: $\frac{c_b}{c_s} = \sqrt{\delta}$ M $\equiv \frac{v}{c_b}$

 ho_s v

Reflected mode at Resonance

Analytic

Simulation (RAMSES)

Pressure waves are reflected off the jet boundary Constructive interference at resonance Propagation angle $sin(\theta) \simeq \frac{1}{M_{\odot}}$

14

(5) Compressible Cylinder

See also (e.g.) Birkinshaw 1984; Payne & Cohn 1985; Hardee & Norman 1988; Bodo + 1994 Analysis of hot jets in cold backgrounds

Axisymmetric modes nearly identical to (P) modes in slab

 Additional non-axisymmetric modes have comparable growth rates. Additional coupling?

The Importance of Eigenmodes

Eigenmodes <u>DO NOT</u> span all possible initial conditions

When comparing growth rate in simulations to linear theory, <u>MUST</u> use eigenmode perturbations

Random IC must either:

 Decay into eigenmodes + additional waves

• Go non-linear first

Figure by Dan Padnos

$M = 1.5 \ \delta_{\rho} = 100 \ R_{\nu} = 80\lambda = 160R_{s}$ (non-eigenmode)

Summary and Outlook

First step in systematic study of instabilities in cold, supersonic streams penetrating hot halo <u>Conclusions</u>

KHI – more complicated than you thought! (Not for kindergardeners) Reflected modes dominate instability of supersonic jet <u>Cold flows in virial halos:</u> Parameters are right at the boundary between two phases of instability – fast and slow

Immediate term:

Quantitative analysis of non-linear evolution with simulations Stream disruption, mass flux / energy / momentum decrease Eigenmode vs non-eigenmode ICs

Medium to long term:

Add cooling, gravity (convection, magnetic fields...) and study other instabilities

