Evolution in the Star Formation Rate Efficiency of Damped Lyman-alpha Systems

Marc Rafelski

NASA Postdoctoral Program Fellow Goddard Space Flight Center June 9, 2015

Damped Lyman Alpha Systems (DLAs): Properties

• Definition of Damped Ly α System (DLA): N(HI) $\ge 2 \times 10^{20}$ cm⁻²

• Distinguishing characteristics of DLAs :

(1) Gas is Neutral

- (2) Metallicity is low: [M/H]~-1.6 (1/30 solar value)
- (3) Molecular fraction is low: $f_{H2} \sim 10^{-5}$
- DLAs dominate the neutral-gas content of the Universe out to z~4.5
- DLAs cover 1/3 of the sky at z=[2.5,3.5]

Can we see these DLAs in emission? Is there in-situ star formation from DLAs?

Two methods to address this question

• Statistical approach using column density distribution function F(N,X) and Kennicutt-Schmidt relation to predict the star formation

- Compare to measured low surface-brightness emission
- Average SFR efficiency of DLAs
- Don't know for sure if measuring DLAs (no direct DLA measured)
- Only studying the highest column-density DLAs
- Direct detection at location of the QSO
 - Background QSO is very bright, so very difficult.
 - Few detections found, and most are biased in their selection (Not likely the typical DLA - brightest and highest metallicity)
 - Innovative method: Double DLA technique.

Statistical approach: can we see DLAs in emission at z~3?

- Gas Density ↔ SFR via Kennicutt-Schmidt relation
- SFR \leftrightarrow FUV L_v (Madau Kennicutt Calibration)
- $L_v/area \leftrightarrow$ Surface Brightness
- Most DLAs: $N \sim 2x10^{20} \rightarrow 3x10^{21} \text{ cm}^{-2}$ $N_{avg} \sim 1x10^{21} \text{ cm}^{-2}$

At z=3 1500 A \rightarrow 6000 A - This puts it in the visible!

Surface Brightness > 29 mag/arcsec²

Only high resolution image sensitive enough is the Hubble Ultra Deep Field (UDF)

How many would we expect in HUDF?

Depends on Three Factors:
1) Column-density distribution function
2) Redshift search interval
3) Linear Sizes of DLAs

 Expect hundreds to thousands to be detected in the Hubble Ultra Deep Field

Wolfe & Chen 2006 result

- Search for extended low-surface-brightness emission
- SFR efficiency of isolated DLAs a factor of ≥10 below KS relation
 Caveat:
- Wolfe & Chen 2006 search excluded objects with high surface-brightness cores ($\mu_V < 26.6 \text{ mag/arcsec}^2$)
- (i.e. SFGs)

Another possibility:

• SFG cores may be embedded in DLAs, and may themselves exhibit *in situ* star formation

SFGs embedded in DLA Neutral Gas Reservoirs

In situ star formation in DLAs associated with SFGs

Compact, symmetric, and isolated z~3 SFGs in V-band

ID: 84	ID: 862	ID: 906	ID: 1217
•	•	•	
V=26.5	V=27.1	V=27.5	V=26.5
ID: 1273	ID: 1414	ID: 1738	ID: 1753
•	•	•	• 10
V=26.2	V=27.1	V=26.2	V=27.4
ID: 2581	ID: 2595	ID: 2946	ID: 3052
		•	٠
V=26.9	V=27.3	V=26.7	V=26.9
ID: 3112	ID: 3128	ID: 3174	ID: 3198
•		•	•
V=25.7	V=26.7	V=25.3	V=26.8
ID: 3219	ID: 3416	ID: 3481	ID: 3922
	•	•	•
V=27.2	V=25.0	V=27.3	V=26.3
ID: 4193	ID: 4302	ID: 4636	ID: 4766
•	•	•	•
V-26.9	V=27.0	V=26.7	V=26.2

ID: 4774	ID: 4830	ID: 5006	ID: 5275
٠	•	•	•
V=26.5	V=27.1	V=27.5	V=26.5
ID: 5346	ID: 5750	ID: 5856	ID: 5916
•		٠	٠
V=26.2	V=27.1	V=26.2	V=27.4
ID: 6352	ID: 6504	ID: 6508	ID: 6595
•	•	•	
V=26.9	V=27.3	V=26.7	V=26.9
ID: 7025	ID: 7610	ID: 7738	ID: 7758
	٠	•	•
V=25.7	V=26.7	V=25.3	V=26.8
ID: 7874	ID: 7986	ID: 8387	ID: 9394
٠	•	**	•
V=27.2	V=25.0	V=27.3	V=26.3
ID: 9570	ID: 9806	ID: 5601	ID: 6030
•		•	
V=26.9	V=27.0	V=26.7	V=26.2

Rafelski et al. 2011

Stack isolated, compact, symmetric z~3 SFG in the V-band (rest-frame FUV)

Radial surface brightness profile of stacked image

Measuring the SFR Efficiency

The KS relation for atomic dominated gas at z~3

Rafelski et al. 2011

IGM@50 2015: Marc Rafelski

Metallicity of gas?

Background radiation field?

Metallicity Evolution of DLAs

IGM@50 2015: Marc Rafelski

Efficiency can be reduced with lower metallicity

Krumholz 2013

IGM@50 2015: Marc Rafelski

Metallicity of gas?

Background radiation field?

Role of molecular vs. atomic hydrogen gas?

To better answer this question, would like to measure SFR efficiency for a range of redshifts

Goal: Measure SFR efficiency from z~1-4

(Need many reliable redshifts in UDF)

The Ultraviolet Hubble Ultra Deep Field

90 HST orbits: 30 F336W 30 F275W 30 F225W

Galaxy Redshifts well determined by photo-z

Improved redshifts from UVUDF: 11 HST band-passes

Factor of >2 improvement in outlier fraction with NUV data

Rafelski et al. 2015

IGM@50 2015: Marc Rafelski

Radial Surface Brightness Profiles for z~1-4

The KS relation for atomic dominated gas at z~1-3

SFR Efficiency of HI gas at z~1-3

Newest version of F(N,X) based on Noterdaeme 2012

SFR Efficiency of HI gas at z~1-3: F(N) at z~1 needed

Local Comparison

Direct approach: Double DLA technique

Target DLA

Method to measure the star formation rates of DLAs at z~2-3

Observations with HST and Keck

20 DLAs with HST/WFC3

12 DLAs from the ground

Fumagalli et al. 2015

Comparison of direct and statistical measurements

Comparison of all HI SF measurements

Another currently untested possibility

DLAs could be dwarf galaxies in the halo of SFGs

MUSE program would find them if far from QSO

Summary

- SFR efficiency of HI gas is a factor of >10 lower at z~1-3 than in normal galaxies at low redshift
- No evolution observed, and therefore likely due to gas type
 low metallicity could cause a threshold for SF
- Unbiased direct observations find no emission at QSO position
 need more sensitive measurements
- Need to measure high NHI systems directly with HST.
- Need to test the possibility of DLAs consisting of low-mass dwarf galaxies in more massive halos. HST + MUSE