The Small-Scale Structure of the z~0.5 Circumgalactic Medium

Kate Rubin (CfA)

with Aleks Diamond-Stanic (UW Madison) and Alison Coil (UCSD)

The Dream: Image the CGM

M82: chandra.harvard.edu

"Imaging" a typical galaxy CGM (cartoon version)

cool, photoionized gas

· · ·

•

"Imaging" a typical galaxy CGM (cartoon version)

Bright background sources: a few options

Stars

Galaxies

R_{QSO}~10⁻³ pc

R_B~10⁻⁷ pc

Shakura & Sunyaev 1973 Frank+2007 $R_{gal} > | kpc$ at z~|

Background QSO spectroscopy is 'easy'.

And at z~0.3-1, MgII 2796, 2803 is the transition of choice.

Background QSO spectroscopy is 'easy'.

And at z~0.3-1, MgII 2796, 2803 is the transition of choice.

Background QSO spectroscopy is 'easy'.

And at z~0.3-1, MgII 2796, 2803 is the transition of choice.

What picture does this paint? (Recall: QSOs have $R_{QSO} \sim 10^{-3} \text{ pc}$)

So, all we need are:

(I) Bright (g<22) blue galaxies at z~0.3-1

(2) which are also within 50 kpc (projected) of a foreground galaxy

09:59:48.9 +02:03:27.9 2006-03-03 13:52:03

5

That is, we need PRIMUS:

(a Magellan/IMACS redshift survey)

cv1a0004

LDP

6420

720.0

3.4

4.5 William

The PRIMUS Pairs:

All projected pairs within 50 kpc with — background objects having g<22.3 — foreground objects having r<23, 0.35<z<1.2

The PRIMUS foreground galaxies:

The PRIMUS galaxy pair spectroscopy

~40 pairs observed over 9 nights on Keck/ LRIS and VLT/FORS2

180 - 300 km/s FWHM resolution

cover at least f/g MgII 2796, 2803, often Fell 2586, 2600

The PRIMUS galaxy pair spectroscopy

The MgII-absorbing CGM, but with background galaxy beams.

The MgII-absorbing CGM, but with background galaxy beams.

The MgII-absorbing CGM, but with background galaxy beams.

And, photoionization modeling of low-z absorbers yields consistent sizes

(but see also Crighton et al. 2014, Prochaska & Hennawi 2009...)

Werk et al., yesterday

Lensed QSOs offer complementary constraints:

Chen et al. 2014

And, these structures are on the verge of being resolved...

If N(MgII) > 10^{14} cm⁻²

At solar metallicity (and with no ionization correction)

 $N(H) > 10^{18.5} \text{ cm}^{-2}$

If cloud is 1 kpc³, $M_{cloud} \sim 2.5 \times 10^4 M_{sun}$

100 kpc

10¹² M_{sun} FIRE halos have particle mass of ~ 10⁴ M_{sun} (Hopkins, Keres, Onorbe, CAFG et al. 2014)

Conclusions

I. Background galaxies offer some of the first direct constraints on the size of cool CGM "clouds"

2. They are coherent over > I kpc (within 50 kpc of bright galaxies)

