The Physical Nature of **Cosmic Accretion of** Baryons & Dark Matter into Halos and their Galaxies

Andrew Wetzel

Moore Fellow Caltech

Carnegie Fellow in Theoretical Astrophysics CARNEGIE

THE OBSERVATORIES

Wetzel & Nagai 2014 arXiv:1412:0662

Spineto, Italy

June 2015

Outline

1. Physical Cosmic Accretion of Dark Matter

2. Physical Cosmic Accretion of Baryons

Standard picture of cosmic accretion into halos

Andrew Wetzel

Physical nature of cosmic accretion into galactic halos

log Physical Radius

Caltech - Carnegie

see Diemand et al 2007, Cuesta et al 2008, Diemer et al 2013

Physical nature of cosmic accretion into galactic halos

see Diemand et al 2007, Cuesta et al 2008, Diemer et al 2013

Caltech - Carnegie

Physical Cosmic Accretion of Dark Matter from simulation with only dark matter

Caltech - Carnegie

Outline

1. Physical Cosmic Accretion of Dark Matter

2. Physical Cosmic Accretion of Baryons

Physical accretion of gas & dark matter from simulation with gas - non-radiative

Andrew Wetzel

Physical accretion of baryons & dark matter from simulation with star formation + thermal feedback

Physical significance of R_{200m}?

Andrew Wetzel

Physical accretion of baryons & dark matter from simulation with star formation + feedback

Andrew Wetzel

Physical Cosmic Accretion of Dark Matter & Baryons

- Dark matter growth is subject to pseudo-evolution
 - at z <~ 1, no significant growth of mass at any radius
- Baryon growth is not subject to pseudo-evolution
 - Physical growth at all radii because gas is dissipational
 - Accretion rate at all r < R_{200m} (nearly) tracks that at R_{200m}
 - Accretion radius of low-mass halos not increase at z <~ 1
- Most meaningful radius to measure cosmic accretion of both dark matter and gas is ~2 R_{200m}(z)

Caltech - Carnegie