The VLA view of the HL Tau disk Observing the earliest stages of planet formation

Carlos Carrasco-González

Instituto de Radioastronomía y Astrofísica (IRyA) UNAM Campus Morelia (México)

Sharing data between two different groups

Guillem Anglada, Mayra Osorio **Kike Macías (IAA-CSIC) Chema Torrelles (IEEC-CSIC)** Zhaohuan Zhu (Princeton) **Claire Chandler (NRAO) Mario Flock (Caltech)** Thomas Henning, Hendrik Linz, Til Birnstiel, Roy van Boekel Luis F. Rodríguez Hubert Klahr (MPIA) **Roberto Galván-Madrid** (IRyA-UNAM) Leonardo Testi Laura Pérez Karl Menten (MPIfR) (ESO), Astronomy Picture of the Day Earth at Night More information available at: 2000 November 27 antwrp.gsfc.nasa.gov/apod/ap001127.html http://antwrp.gsfc.nasa.gov/apod/astropix.html

Star formation from parsecs to tens of AU

Disk Evolution

Processes that are taking place at scales of ~1 AU or less

Formation of planets shapes the disk Protoplanets "clean" their orbits -> HOLES in the disk

Zhu+2015

HIGH ANGULAR RESOLUTION RADIO OBSERVATIONS OF THE HL/XZ TAU REGION: MAPPING THE 50 AU PROTOPLANETARY DISK AROUND HL TAU AND RESOLVING XZ TAU S INTO A 13 AU BINARY

CARLOS CARRASCO-GONZÁLEZ^{1,2}, LUIS F. RODRÍGUEZ², GUILLEM ANGLADA¹, AND SALVADOR CURIEL³

¹ Instituto de Astrofísica de Andalucía (CSIC), Camino Bajo de Huétor 50, E-18008 Granada, Spain; charly@iaa.es, guillem@iaa.es
² Centro de Radioastronomía y Astrofísica (UNAM), Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México; l.rodriguez@astrosmo.unam.mx
³ Instituto de Astronomía (UNAM), Apartado Postal 70-264, D.F. 04510, Mexico; scuriel@astroscu.unam.mx
Received 2008 November 15; accepted 2009 January 23; published 2009 February 18

Carrasco-González et al. (2009)

ALMA

The most powerful mm interferometer

High sensitivity (~microJy/beam) High angular resolution (~mas)

Disk evolution and planet formation -> Key project

HL Tau @ ALMA 1.3 mm

The most detailed and highest quality image of a circumstellar disk ever obtained

ALMA Partnership, Brogan+2014

HL Tau @ ALMA 1.3 mm

7 pairs of BRIGHT and DARK rings

ALMA Partnership, Brogan+2014

If, as commonly interpreted, gas are a consequence of planet formation, HL Tau would have a relatively **well formed planetary system.**

But HL Tau is a YSO with only 1,000,000 years... very soon

Planets begin to forms very early and they form very fast??

There are **no massive planets** (> 15 M_J) at the **outer parts** of the disk (> 50 AU)

But, maybe less massive planets or in the internal parts?

But, these structures seems to be more common than expected

Zhang et al. (2015)

Pérez et al. (2016)

Fedele et al. (2017)

Isella et al. (2017)

HL Tau ~1 million years

TW Hya ~10 million years

r~1 AU

Partnership, Brogan+2015

Andrews+2016

And, there are also alternative explanations for the formation of gaps... Two examples:

Magnetized disk (Flock+2015)

A single protoplanet (Dong+2017) Planets or not, these are the **most resolved and detailed images** of a circumstellar disk ever obtained First time we can **model** details of the **substructure** in the disk

Pinte et al. (2016)

Jin et al. (2016)

Problem: Emission at all ALMA wavelengths is **optically thick**

Pinte et al. (2016)

Jin et al. (2016)

ALMA emission is optically thick at the densest parts. Specially the internal disk (<50 AU), where grain growth is expected to be more important, and terrestrial planets are expected to form.

You may better know it as a cm wavelength interferometer but it is **also a very powerful mm interferometer**....

Q Band (43 GHz; **7 mm**) **K Band** (23 GHz; **13 mm**)

Ka Band (33 GHz; 10 mm)

27 antennas separated by 30 km

angular resolutions ~ **30-100 mas**

sensitivity (<2010) ~ 100 microJy/beam sensitivity (>2010) ~ **1 microJy/beam**

VLA multi-configuration, wide band, high sensitive, high angular resolution observations at 7 mm

Table 1. Summary of VLA observations at Q band

Obs.	Project		On-source
Date	Code	Conf.	total time
2014-Dec-07	14B-485	С	1.7 h
2015-Feb-15	14B-485	В	1.6 h
2015-Aug-13	14B-487	А	1.1 h
2015-Aug-25	14B-487	А	1.1 h
2015 -Sep- 16^{a}	14B-487	А	1.1 h
2015-Sep-19	14B-487	А	$1.7 \ h$
2015-Sep- 20	14B-487	А	2.2 h
2015-Sep- 20	14B-487	А	$1.5 \ h$
2015-Sep- 21	14B-487	А	1.7 h
2015-Sep- 21	14B-487	А	$1.7 \ h$

>15 hr of observation at Q band with excellent atmospheric conditions

VLA multi-configuration, wide band, high sensitive, high angular resolution observations at 7 mm

Now, THIS is a very nice image of a disk a long mm wavelengths

up to ~40 mas (5 AU!) of resolution, ~3.5 microJy/beam rms noise

Emission at 7 mm is optically thinner than ALMA images

1. Mass distribution in the disk

1. Mass distribution in the disk

Table 2. Dust masses for the inner disk and bright rings

	Disk	Radius	Dust Mass (M_{\oplus})	
]	Feature	(au)	This paper ^a	Pinte et al. ^b
	ID	<13	10 - 50	>2.3
	B1	13 - 32	70 - 210	>47
	B2	32 - 42	30 - 90	30 - 69
	B3	42 - 50	20 - 80	14 - 37
	B4	50 - 64	30 - 90	40 - 82
	B5	64 - 74	10 - 50	5.5 - 8.7
	B6	74 - 90	40 - 140	84 - 129

The most **internal features** of the disk seems to be **more massive** than previously inferred

Disk seems to be **more massive** than previously inferred: $7 \text{ mm} \longrightarrow (1-3) \times 10^{-3} \text{ Msun}$ ALMA Modeling $\longrightarrow (0.3-1) \times 10^{-3} \text{ Msun}$

Dust in the HL Tau disk is already growing at the most internal parts (<50 AU)

ALMA@ 1.3 mm VLA@ 7 mm

ALMA@ 1.3 mm VLA@ 7 mm

ALMA@ 1.3 mm VLA@ 7 mm

Simulation

Looks like a **dense clump** in the densest and most massive ring

Estimated dust mass ~3-8 Mearth

On planet formation in HL Tau

ALMA@ 1.3 mm

VLA@ 7 mm

7 gaps -> 7 planets? Not more evidences yet Alternative explanations HL Tau is VERY young

Very dense/massive inner disk Dust grains are growing at densest parts Probably, clumps are starting to form in DENSE RINGS

<u>Our proposal:</u>

Gaps (dark rings) are NOT formed by planets. They are common and appear very early on disks. Once formed, dense parts (bright rings) can suffer from instabilities/fragmentation and form planetary embryos

The dense rings in HL Tau can actually represents the very early stage of planet formation.

READ OUR PAPER:

Carrasco-González et al. 2016, ApJ Letters 821, 16

Remarks

HL Tau @ ALMA+VLA

We are in a very <u>exciting epoch</u> for the study of planet formation

> ALMA is producing <u>very</u> <u>detailed images</u> of protoplanetary disks.

But, there is still a need for observation at <u>longer</u> <u>wavelengths</u>, were dust emission is <u>optically thinner</u>. At the moment, <u>VLA</u> is the best instrument to solve this.

Future: ALMA Band 1, ngVLA