OUR ASTROCHEMICAL HERITAGE

Paola Caselli

Center for astrochemical studies, Max-Planck-Institute for extraterrestrial Physics

FORMATION OF SIMPLE AND COMPLEX MOLECULES. THICK ICY MANTLES.

2- PROTOSTELLAR PHASE: collapsing, warm dense gas PARTIAL ICE SUBLIMATION. HOT/SHOCK CHEMISTRY.

> **3- PROTOPLANETARY DISK PHASE:** DUST COAGULATION. GAS/ICE PROCESSING.

4- PLANETESIMAL FORMATION : grains agglomeration

5- PLANET FORMATION AND THE "COMET/ASTEROID RAIN" DELIVERY OF PROCESSED AND PRISTINE MATERIAL (?) + LIFE

Adapted from: Caselli & Ceccarelli 2012

OUTLOOK.

Pre-stellar cores D-fractionation ¹⁵N-fractionation Complex organic molecules The dawn of protoplanetary disks

-2

-0.6

-0.4

-0.2

-0.0

Radial distance (pc)

0.2

g

profiles consistent with oscillations (Lada et al. 2003) Spectral line profiles consistent with (subsonic) contraction motions (Tafalla et al. 1998; Caselli et al. 2002)

Abundance

0.4

0.6

Spectral line

The gas temperature drops to ~6 K in the central few thousand AU of a pre-stellar core

Crapsi, Caselli, Walmsley, Tafalla 2007

CO freeze out and the deuteration zone

H₃⁺ + HD -> H₂D⁺ + H₂ + 230 K (*Watson 1974*) Neutral (O, CO) depletion (*Dalgarno & Lepp 1984*)

(see also Bacmann et al. 2002, 2003; Hirota et al. 2003; Pagani et al. 2007; Spezzano et al. 2016)

Deuteration in protostellar objects

From: Caselli & Ceccarelli 2012 (see also Coutens et al. 2016, for D-frac of NH₂CHO and HNCO)

Ceccarelli, Caselli, Bocklelèe-Morvan, Mousis, Pizzarello, Robert, Semenov 2014, PPVI (see also **Bianchi et al. 2017, Poster #34; Chacon-Tanarro, Poster #4**)

HDO/H₂O in our Solar System requires ice production during the cold phase (Cleeves et al. 2014) \rightarrow pre-stellar cores are important !

Differential ¹⁵N enhancement between nitrile- and aminebearing interstellar molecules. No correlation with D-frac.

see also: Wampfler+2014 for **protostars** (HCN/HC¹⁵N~150-400) and Guzmán+2017 for **protoplanetary disks** (HCN/HC¹⁵N ~80-160)

The ¹⁴N/¹⁵N ratio

Maps of δD and $\delta^{15}N$ δD Deuterium/Hydrogen % 24000 21000 19000 16000 13000 10000 7400 4600 1800 -1000 2 µm $\delta^{15}N$ Nitrogen isotopes 1500 1300 1100 210 2 um

‰

940

760

580

400

31

-150

Large ¹⁵N excess is found in primitive material (meteorites, IDPs, cometary dust particles) returned by *Stardust*): e.g. ¹⁴N/¹⁵N ~ 65 found in the "hot spots" of the meteorite Bells (Buseman et al. 2006).

D-enriched spots do not always coincide with ¹⁵N-enriched ones (e.g. Buseman et al. 2010; *Robert et al. 2006).*

Differences are found between functional groups in "hot spots": ¹⁵N fractionation larger in –CN than in –NH₂ and –NH functional groups (van Kooten et al. 2017).

From Busemann et al., 2006, Science, v. 312, p. 728.)

¹⁵N-fractionation in N₂H⁺ (Bizzocchi et al. 2010, 2013)

¹⁴N/¹⁵N in high-mass star-forming regions

in N₂H⁺ : ~180-1300 in CN : ~270-440 *Fontani et al. 2015*

in HCN : 390±24 in HNC : 440±22 (no correlation between ¹⁵N and D fractionation) *Colzi et al. 2017 (+ Poster #6!)*

in HCN : ~70-760 in HNC : ~161-541 (lowest values toward least dense region) *Zeng et al. 2017*

COMs in pre-stellar cores

Jiménez-Serra et al. 2016

5000 AU

see also Öberg+2010; Bacmann+2013; Bizzocchi+2014; Vastel+2014; Bacmann & Faure 2016

Gas + grain chemistry in L1544

- physical structure
- gas-grain chemistry
- reactive desorption
- photodesorption
- neutral-neutral reactions (Shannon+2008; Balucani+2015; Barone+2015; Skouteris+2017)

Vasyunin et al. 2017

NOEMA Large Project: Ceccarelli & Caselli PIs (see Poster #13 by López-Sepulcre)

Codella+, sub. Fontani+, sub. Ceccarelli+, in prep. Punanova+, in prep. Neri+, in prep. Feng+, in prep.

Seeds Of Life In Space

Origin and evolution of complex organic molecules in the early stages of formation of Solar-type systems

Chemical inventory in a gravitationally unstable (proto-Solar) young disk

Evans et al. 2015

Optically thick dust continuum emission in a gravitationally unstable (proto-Solar) young disk

<u>ALMA observation simulations</u>: disk masses can be underestimated by at least a factor of 30 at 850 GHz and 2.5 at 90 GHz.

Evans et al. 2017

Protostellar disk formation enabled by removal of small dust grains

- Removing very small grains (VSGs: 10Å few 100Å) enhances ambipolar diffusion (AD) by 1-2 orders of magnitude .
- VSGs are highly conductive:
 - well-coupled to magnetic field
 - "drag" neutral molecules more efficiently than ions.

Efficient AD reduces magnetic flux and weakens magnetic braking:

 \rightarrow Enable the formation of rotationally supported disks of tens of AU in radius

Zhao et al. 2016

Disk formation and fragmentation in 3D

VSG removal allows formation of gravitationally unstable disks. Formation of Jupiter-mass fragments, a fraction of which accrete onto the protostar producing bursts.

Zhao et al., subm.

A TRIPLE PROTOSTAR SYSTEM FORMED VIA FRAGMENTATION OF A GRAVITATIONALLY UNSTABLE DISK

Tobin et al. 2016, Nature (see also Pérez et al. 2016, Science)

- Pre-stellar cores: n_c > 10⁵ cm⁻³, T_c = 6-7 K, quasi-static contraction, large CO freeze-out (>90%) & D-fraction (>10%) –*first steps toward pre-biotic chemistry.*
- Large D-fraction at all phases of star and planet formation (including Solar System), with D/H in organics > D/H in water —*storage of pre-stellar ice?*
- Different ¹⁵N enhancement in CN- and NH-bearing ISM molecules and meteorites. ¹⁵N and D fractionation not correlated. N₂H⁺ fractionation not understood.
- COMs abundances in comets similar to those in star & planet forming regions — Solar System chemistry not unique.
- Depletion of very small grains enables disk formation. Shocks and fragmentation in early disks —*importance of microphysics + rich chemistry*.