The Effect of Photoevaporation on the First Stars

David Hollenbach SETI Institute

Francesco's Legacy: Star Formation in Space and Time

Firenze, Italy June 5-9, 2017

Thanks to K. Tanaka, K. Omukai, T. Hosokawa, H. Yorke, J. Tan, and F. Palla for patiently answering my questions!

Francesco

Introduction: Formation of First Stars z~20

$$M_{tot} \approx 10^{6} \ M_{\odot} \ but \ M_{gas} \approx 10^{5} \ M_{\odot}$$

 $M_{core}\approx M_{J}\approx 1000~M_{\odot}$, $n\approx 10^{4}~cm^{-3},~r\approx 1~pc,~T\approx 300~K$

$$\dot{M}_{acc} \simeq \frac{M_J}{t_{ff}} \simeq \frac{c_s^3}{G} \simeq 2 \times 10^{-3} \left(\frac{T}{10^3 \text{ K}}\right)^{3/2} M_{\odot}/\text{yr}$$
$$M_{\star} \text{ (max)} \simeq \dot{M}_{acc} t_{ms} \sim 1000 M_{\odot}$$

Introduction: Feedback by EUV Disk Photoevaporation

Introduction: Outline of Talk

- I. Introduction
- II. Initial Upper Limits on Mass of First Stars (~2005-2008)
 Unpublished work of Francesco and myself
 Comparison with McKee and Tan (2008)
- III. Revision of Upper Limits on Mass of First Stars In part, revised (higher) photoevaporation rates from disks Hosokawa et al (2011) Tanaka et al (2013)
- IV. Discussion of New Photoevaporation Rates
- V. Conclusion

II. Initial Upper Limits to the Mass of First Stars

$$\phi_{i} = 7.9 \times 10^{49} \left(\frac{M_{\star}}{100M_{\odot}}\right)^{1.5} s^{-1}$$

$$\dot{M}_{evap} \simeq 1.6 \times 10^{-4} \left(\frac{M_{\star}}{100 M_{\odot}}\right)^{1.25} M_{\odot} \, yr^{-1}$$

n(base) proportional to $r^{-3/2}$ for r<r_g

Hollenbach et al(1994) (H94)

II. Initial Upper Limits to Mass of First Stars Unpublished work of F. Palla and D. Hollenbach ~ 2007

II. Initial Upper Limits to Mass of First Stars McKee and Tan (2008) Feedback limits Accretion Rate

III. Revision of Upper Limits to the Mass of First Stars Hosokawa et al (2011), Tanaka et al (2013)

$$\dot{M}_{evap} = 1.4 \times 10^{-4} \left(\frac{\dot{\phi}_i}{10^{49} \text{s}^{-1}} \right)^{1/2} \left(\frac{r_d}{10^{17} \text{cm}} \right)^{1/2} \ M_{\odot} \, \text{yr}^{-1}$$

$$\begin{split} \varphi_i &= 7.9 \times 10^{49} \ \left(\frac{M_{\star}}{100 M_{\odot}}\right)^{1.5} \ s^{-1} \\ \dot{M}_{evap} &= 3.9 \times 10^{-4} \ \left(\frac{M_{\star}}{100 M_{\odot}}\right)^{0.75} \left(\frac{r_d}{10^{17} cm}\right)^{1/2} \ M_{\odot} \ yr^{-1} \end{split}$$

n(base) proportional to r^{-3/2} for r<r_d --ALL THE WAY!

Tanaka et al (2013)

III. Revision of Upper Limits to Mass of First Stars Tanaka higher rate

III. Revision of Upper Limits to Mass of First Stars Hosokawa et al, higher evap rate, less accretion

 $n_o(Tanaka) = 0.9 n_o(H94); exp(6.0) vs exp(4.7) !$

 $r_s = 400 r_i > 800 AU$ Tanaka et al with $r_i > 2 AU$ > 4000 AU Hosokawa et al, $r_i > 10 AU$ $r_s = 110 r_i = 44 AU$ H94 with $r_i = 0.4 AU$

n(r) α r^{-3/2}, and n(z) constant to z= H(r) for r<r_g n(z) constant to z= r or r_d for r>r_g

Hosokawa 2017, private communication

V. Conclusions

- 1. Current models are likely overestimating the photoevaporative mass loss rates from disks around massive first stars, and underestimating the attenuation of EUV photons caused by the ionized atmosphere at r < 2-10 AU.
- 2. As a result, they may be underestimating the final mass of the first stars.
- 3. Further work needed with 2D radiation/hydro numerical models
 - a. Better spatial resolution, especially at r< 2-10 AU and for regions just above the neutral disk surface.
 - b. Explore the effects of the flaring of the neutral disk surface given the shadowing by the ionized atmosphere.
 - c. Check whether the reversal of infall is the dominant process limiting stellar mass, and not photoevaporation from disk surface. Does shadowing protect the infall onto the disk?

December 2013

