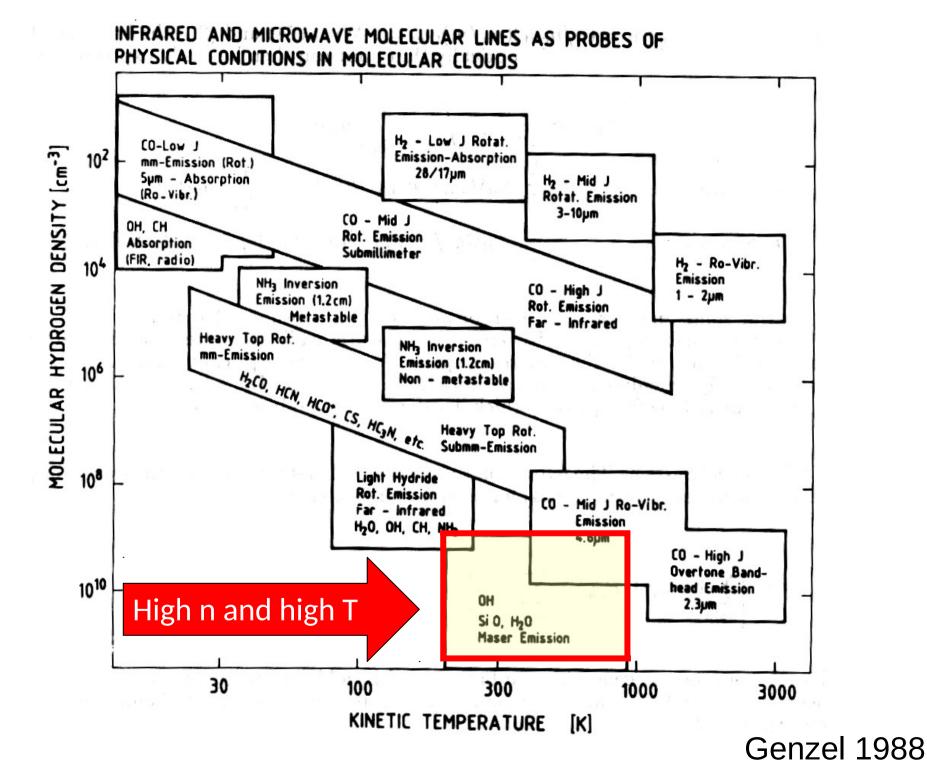
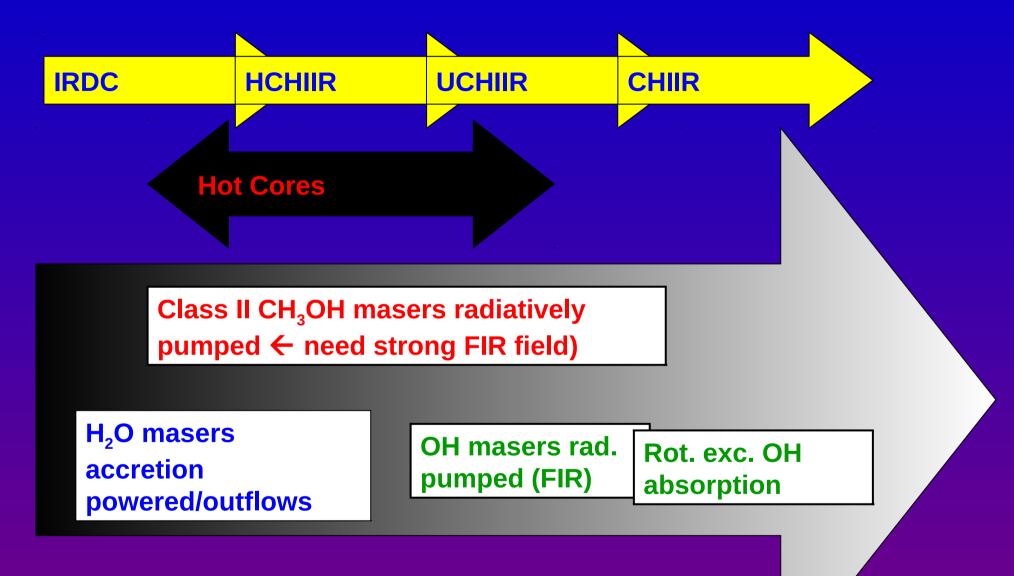


Francesco's Legacy

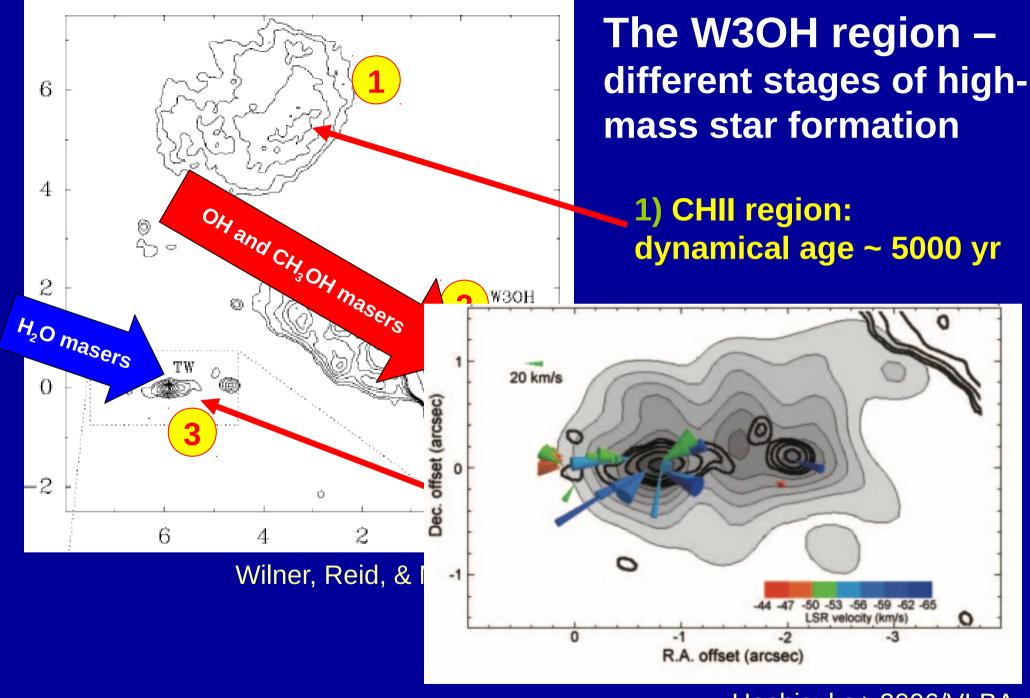
Florence, 2017 June 7



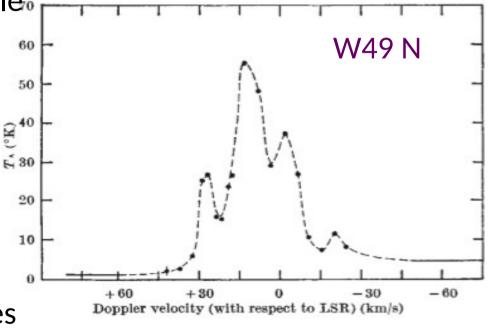
Francesco's Legacy


Florence, 2017 June 7

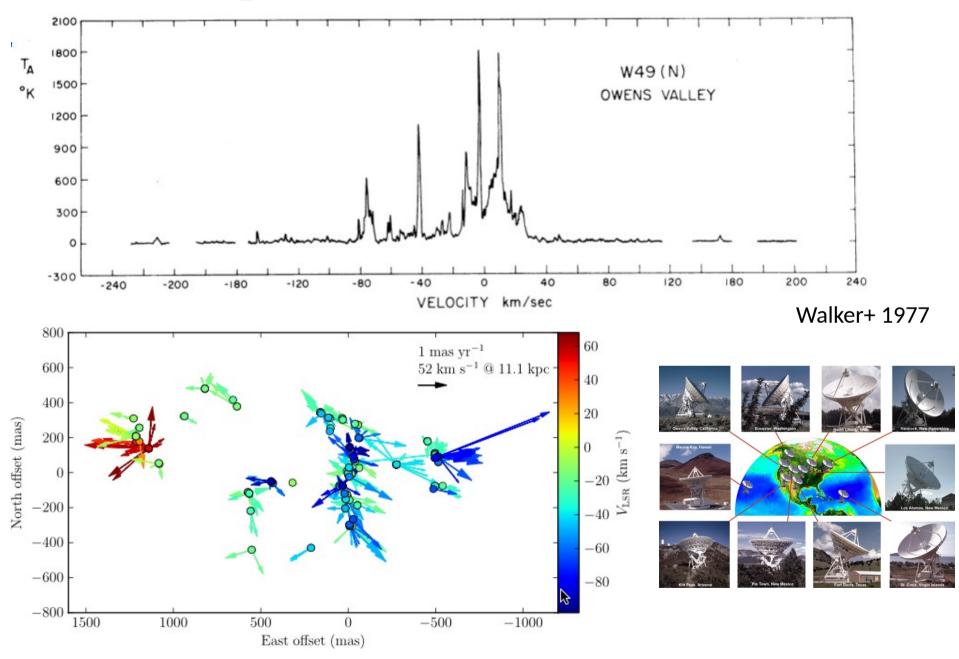
Common Strong Interstellar Masers:


		First found	Where	Pump	# known
ОН	Hydroxyl	1965	UCHIIRs	R (FIR)	many
H ₂ O	Water vapor	1969	L+HM YSOs	С	very many
CH₃OH	Methanol	1971 (I) 1986 (II)	Class I outflows Class II HMYSOs	CI. I: C CI. II: R (FIR)	Class I: many Class II: very many

Masers in Regions of High Mass Star Formation



t


The 22.2 GHz H₂O line

- •Discovered 1969 by Cheung ... Townes ...
 - First triatomic interstellar molecule.
 - In Orion, Sgr B2, W49 N
 - Very intense emission/ strongest
 radio line: W 49 N ~ 1 L_n
- Level energies 643 K above ground
- Very wide velocity spread
- •VLBI:
 - Very compact, variable emission
 - Very high brightness temperatures
 - → Maser
 - Collisonally pumped in post-J shock gas
 Neufeld & Melnick 1991, Hollenbach+ 2013

Cheung+ 1969

H₂O Maser motions in W49 N

Luminosity in 22.2 GHz H_2O line ~1 L_0

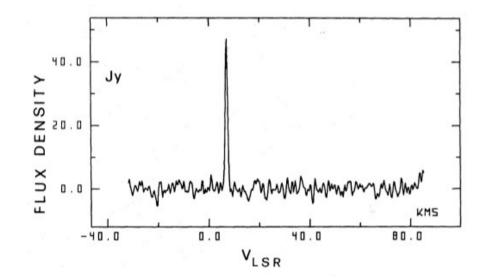
Interstellar H₂O Masers

- •are always associated with outflows → trace accretion
- are signposts for energy sources
- Variability marks energetic events

Interstellar H₂O Masers

- •are always associated with outflows → trace accretion
- are signposts for energy sources
- Variability marks energetic events

Research Note


A search for H₂O maser emission in the Serpens region

F. Palla 1, 2 and C. Giovanardi 1, 2

¹ Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy

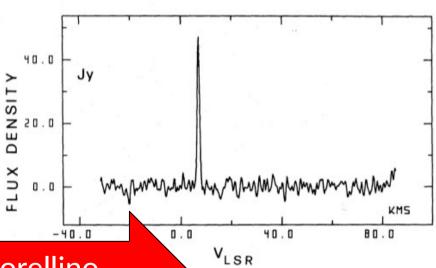
Summary. We present the results of repeated H₂O maser line observations (22.2 GHz) in the Serpens region obtained with the 32 m parabola of the Medicina Station over a period of 16 months. Several positions coincident with pre-main-sequence (PMS) objects and far-infrared (FIR) sources were observed, with no positive detection at an average rms = 1.5 Jy. We have also mapped three regions: the cloud molecular core, the Ser/G3-G6 complex, and the strong IRAS source 18278+O111. Only within the core, and only in one out of six observing runs a feature of 48 Jy was observed. This line coincides in position and velocity with one of the two masers once reported (Blair et al., 1975), but never detected since then.

Key words: interstellar medium: clouds: Serpens – masers – radio lines: molecular – stars: pre-main-sequence

1. Introduction

Water vapor masers in the Serpens cloud are sneaky objects. This

² Centro di Astronomia Infrarossa, C.N.R., Largo E. Fermi 5, I-50125 Firenze, Italy



Research Note

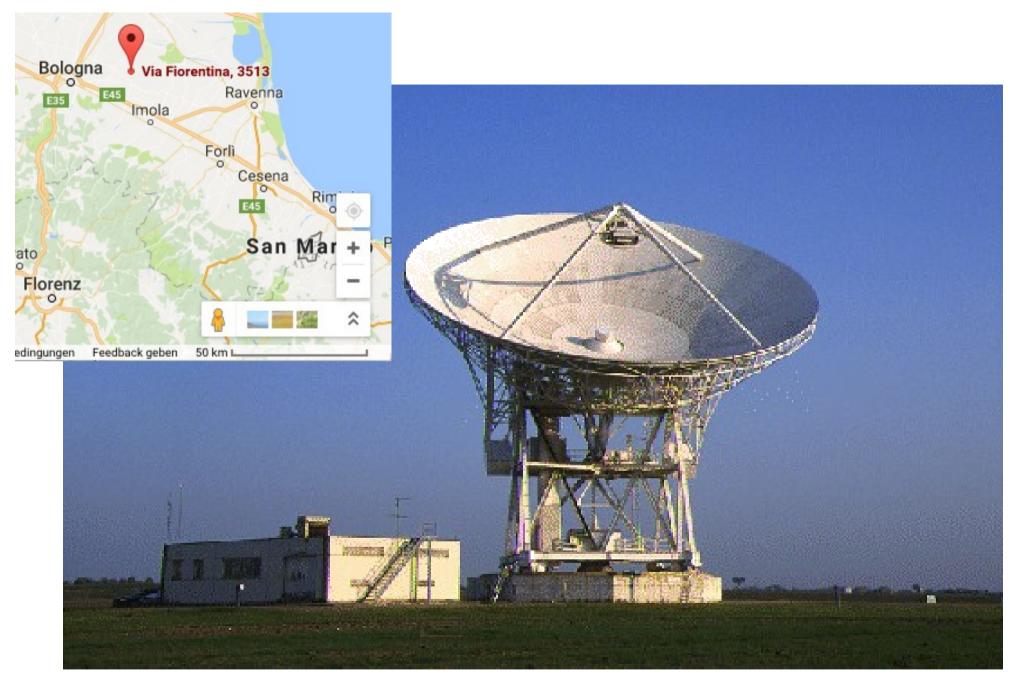
A search for H₂O maser emission in the Serpens region

F. Palla 1, 2 and C. Giovanardi 1, 2

Summary. We present the results of repeated H₂O maser line observations (22.2 GHz) in the Serpens region obtained with the 32 m parabola of the Medicina Station over a period of 16 months. Several positions coincident with pre-main-sequence (PMS) objects and far-infrared (FIR) sources were observed, with no positive detection at an average rms = 1.5 Jy. We have also mapped three regions: the cloud molecular core, the Ser/G3-G6 complex, and the strong IRAS source 18278+O111. Only within the core, and only in one out of six observing runs a feature of 48 Jy was observed. This line coincides in position and velocity with one of the two masers once reported (Blair et al., 1975), but never detected since then.

Poster 41 on Serpens/Herschel by E. Fiorellino

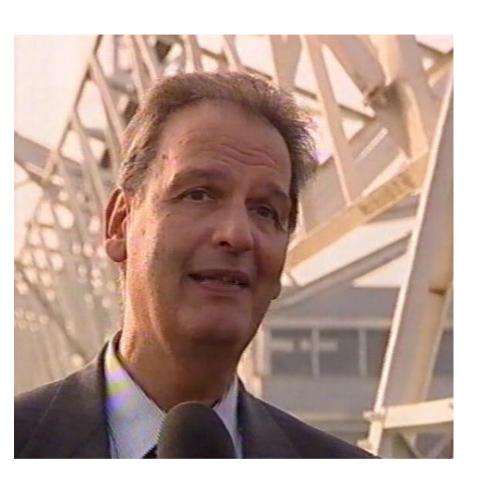
1. Introduction

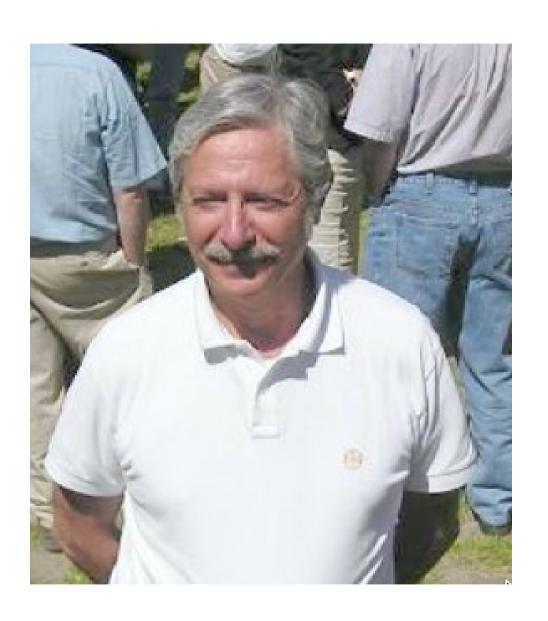

Water vapor masers in the Serpens cloud are sneaky objects. This

¹ Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy

² Centro di Astronomia Infrarossa, C.N.R., Largo E. Fermi 5, I-50125 Firenze, Italy

Amazing bandwidth!


13	☐ <u>1989A&AS77157G</u> Giovanardi, C.; Palla, F.	1.000 Revision a	02/1989 and extension to	_	F G mperature of numerical of	R C estimate	es of the electron collisional rates for atomic hydrogen
14	☐ <u>1989A&A223267P</u> Palla, F.; Giovanardi, C.	1.000 A search f	10/1989 for H2O maser 6	_	F G in the Serpens region	<u>R</u> <u>C</u>	<u>s</u>


The 32 meter telescope of Medicina Radio Observatory •Built in 1983

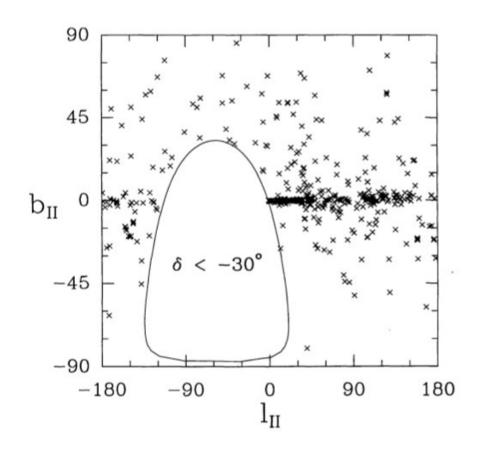
EVN – the European VLBI Network

Gianni Tofani 1938-2015

Marcello Felli

(A somewhat later edition of) il gruppo radioastronomia di Arcetri

(A somewhat later edition of) il gruppo radioastronomia di Arcetri



ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES

Astron. Astrophys. Suppl. Ser. 76, 445-458 (1988)

A catalogue of H_2O maser sources north of $\delta = -30^{\circ}$

- R. Cesaroni (1), F. Palagi (2), M. Felli (3), M. Catarzi (3), G. Comoretto (3), S. Di Franco (1),
- C. Giovanardi (3) and F. Palla (3)
- (1) Istituto di Astronomia, largo E. Fermi 5, 50125, Florence, Italy
- (2) C.N.R., Gruppo Nazionale Astronomia, U.d.R. Arcetri, largo E. Fermi 5, 50125, Florence, Italy
- (3) Osservatorio Astrofisico di Arcetri, largo E. Fermi 5, 50125, Florence, Italy

ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES

Astron. Astrophys. Suppl. Ser. 76, 445-458 (1988)

A catalogue of H₂O maser sources north of $\delta = -30^{\circ}$

- R. Cesaroni (1), F. Palagi (2), M. Felli (3), M. Catarzi (3), G. Comoretto (3), S. D C. Giovanardi (3) and F. Palla (3)
- (1) Istituto di Astronomia, largo E. Fermi 5, 50125, Florence, Italy
- (2) C.N.R., Gruppo Nazionale Astronomia, U.d.R. Arcetri, largo E. Fermi 5, 50125, Floren
- (3) Osservatorio Astrofisico di Arcetri, largo E. Fermi 5, 50125, Florence, Italy

ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES

Astron. Astrophys. Suppl. Ser. 84, 179-225 (1990)

The Arcetri atlas of H2O maser sources

G. Comoretto (3), F. Palagi (2), R. Cesaroni (1), M. Felli (3), A. Bettarini (3), M. Catarzi (3), G. P. Curioni (3), P. Curioni (3), S. Di Franco (1), C. Giovanardi (3), M. Massi (3), F. Palla (3), D. Panella (3), E. Rossi (3), N. Speroni (2) and G. Tofani (3)

5, 50125, Firenze, Italy

(1) Istituto di Astronomia, Largo E. Fermi 5, 50125, Firenze, Italy

MARCH 1994, PAGE 541

(2) C.N.R., Gruppo Nazionale Astronomia, U.d.R. Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy

ASTRONOMY & ASTROPHYSICS

SUPPLEMENT SERIES

Astron. Astrophys. Suppl. Ser. 103, 541-572 (1994)

The Arcetri catalogue of H₂O maser sources update*

- J. Brand^{1,2}, R. Cesaroni¹, P. Caselli³, M. Cat S. Di Franco⁵, M. Felli¹, C. Giovanardi⁴, L. O
- N. Speroni⁴ and G. Tofani¹
- Osservatorio Astrofisico di Arcetri, Florence, It
- ² Istituto di Radioastronomia CNR, Via Gobetti
- ³ Dipartimento di Astronomia, Univ. di Bologna ⁴ C.N.R., Gruppo Naz. Astronomia, U.d.R., Arc
- ⁵ Dipartimento di Astronomia e Scienza dello Sp

A&A 368, 845-865 (2001)

DOI: 10.1051/0004-6361:20000526

© ESO 2001

Astronomy

JULY 1990, PAGE 179

The Arcetri Catalog of H₂O maser sources: Update 2000*,**

R. Valdettaro¹, F. Palla¹, J. Brand², R. Cesaroni¹, G. Comoretto¹, S. Di Franco³, M. Felli¹, E. Natale⁴, F. Palagi⁴, D. Panella¹, and G. Tofani¹

- ¹ Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
- ² Istituto di Radioastronomia CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento di Astronomia e Scienza dello Spazio, Largo E. Fermi 5, 50125 Firenze, Italy
- ⁴ CAISMI, C.N.R., Largo E. Fermi 5, 50125 Firenze, Italy

Osservatorio Astrofisico di Arcetri

ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES

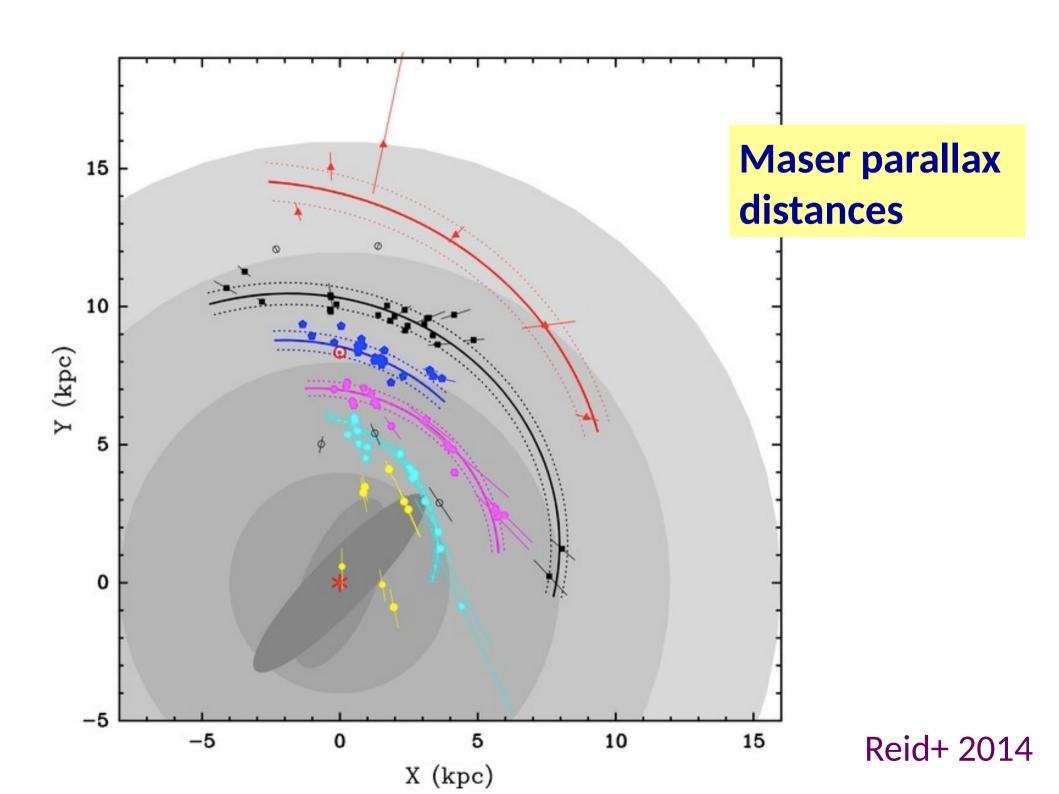
Astron. Astrophys. Suppl. Ser. 76, 445-458 (1988)

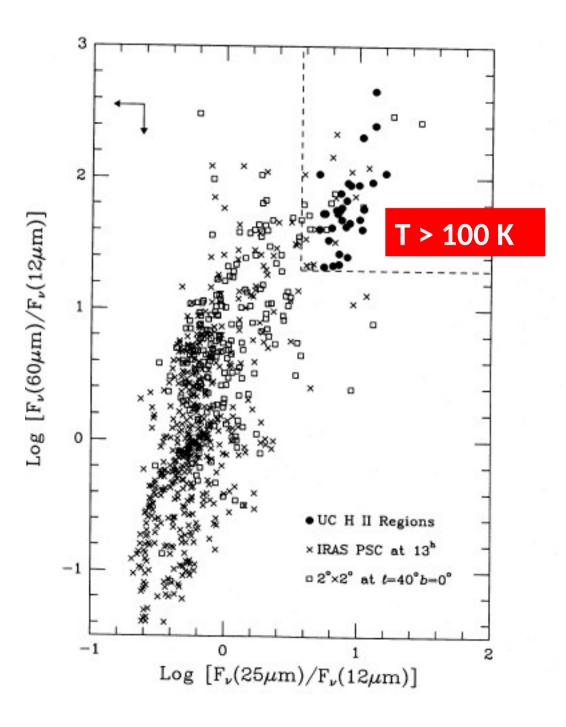
A catalogue of H_2O maser sources north of $\delta = -30^{\circ}$

- R. Cesaroni (1), F. Palagi (2), M. Felli (3), M. Catarzi (3), G. Comoretto (3), S. Di Franco (1),
- C. Giovanardi (3) and F. Palla (3)
- (1) Istituto di Astronomia, largo E. Fermi 5, 50125, Florence, Italy
- (2) C.N.R., Gruppo Nazionale Astronomia, U.d.R. Arcetri, largo E. Fermi 5, 50125, Florence, Italy
- (3) Osservatorio Astrofisico di Arcetri, largo E. Fermi 5, 50125, Florence, Italy

TABLE I.

*	***	***	******	***	**************	**	*****	***	******	*	******	****	******	*****	* *	**********	*******
1	Rig	ht .	Asc. De	cli	nat. Name	10	Class	IG	al. Long.	. 1	Gal. Lat.	Flu	x (Jy) V	(km/s)	1	Reference	
1	00	00	45.0 +55	24	21.0 Y CAS	1	STAR	1	116,144	ī	-6.552	1	3.80	2.4	ı	271,272,280,288	1
1	00	05	3.4 -25	46	21.0 SY SCL	- 1	STAR	1	39.914	١	-80.045	1	13.80	22.6	1	276	1
- 1	00	11	44.6 +64	12	4.0 IRAS00117+6412	- 1	HII	1	118.961	1	1.893	1	6.001	-30.0	1	259	1
- 1	00	11	44.9 +64	11	50.0 IRAS00117+6412	-	HII	1	118.961	ı	1.889	1	2.001	-38.0	1	259	1
1	00	21	9.6 +65	49	26.0 IRAS00211+6549	- 1	HII	1	120.153	1	3.378	1	16.00	-38.0	1	259	1
- 1																	1
1	00	33	53.3 +63	12	32.0 IRAS00338+6312	- 1	HII	1	121.301	1	0.659	1	0.501	-29.0	1	259	1
1	00	34	5.41+62	51	32.0 TY CAS	- 1	STAR	1	121.303	1	0.308	1	16.70	-58.9	1	266,276	1
1	00	34	16.1 +63	47	30.0 IRAS00342+6347	- 1	HII	1	121.377	ı	1.238	1	9.001	-20.0	1	259	1
1	00	34	17.2 +63	47	5.0 IRAS00342+6347	- 1	HII	1	121.378	1	1.231	1	5.00	-20.0	1	259	1
1	00	37	58.7 +62	48	21.0 IRAS00379+6248	- 1	HII	1	121.744	١	0.233	1	5.001	-18.0	1	259	1
1																	1
1	00	42	50.0 +68	54	36.0 IRC+70012	- 1	STAR	1	122.445	1	6.317	1	1.401	-25.0	1	271	1
1	00	46	51.2 +65	27	19.0 IRAS00468+6527	- 1	HII	1	122.779	ı	2.856	1	0.501	-51.0	1	259	1
1	00	49	29.2 +56	17	36.0 NGC 281	- 1	HII	1	123.071	١	-6.307	1	26.001	-32.0	1	41	Î
1	01	03	49.0 +12	18	42.0 CIT 3	- 1	STAR	1	128.653	1	-50.126	1	6.601	22.2	1	271,272,280,288	1
1	01	04	35.7 +65	05	21.0 IRAS01045+6505	- 1	HII	1	124.645	١	2.539	1	5.001	-84.0	1	259	1


Medicina survey data provide targets



Bar and Spiral Structure Legacy Survey, a VLBA Key Science Project

VERA: VLBI Exploration of Radio Astronomy

Finding embedded high mass young stellar objects

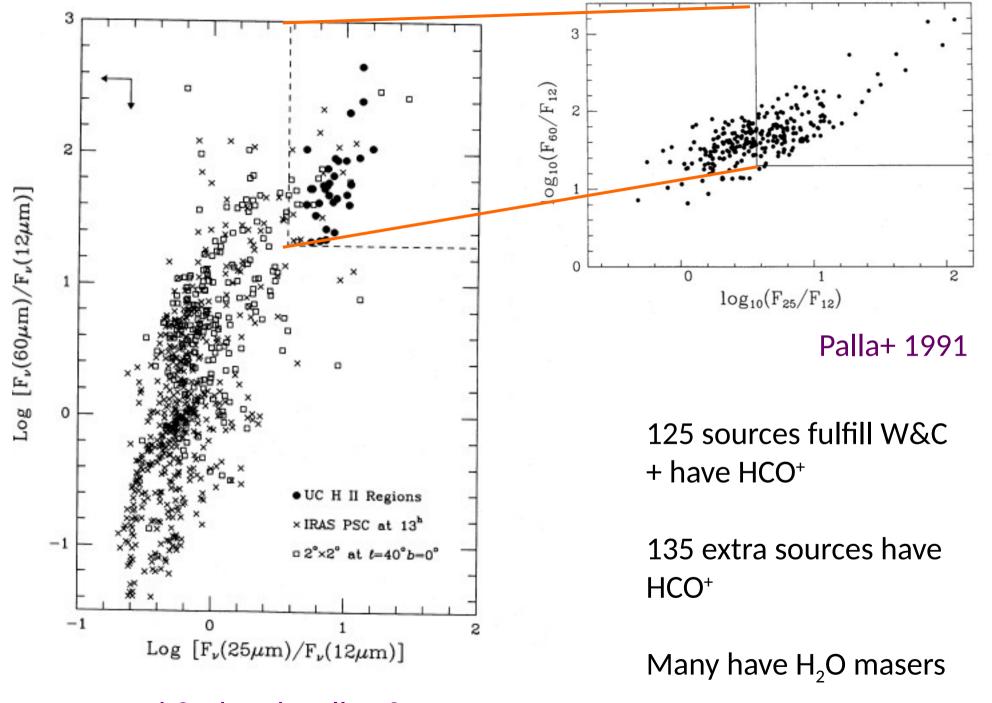
IRAS Point Source Catalog 12 + 25 + 60 + 100 μm

Wood & Churchwell 1989

Water masers associated with dense molecular clouds and ultracompact H II regions

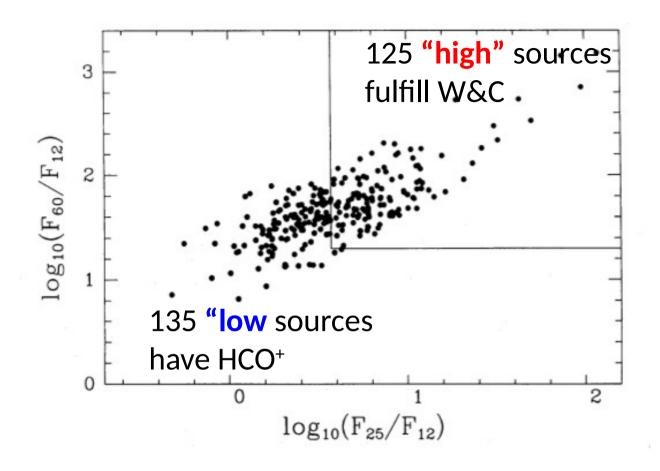
F. Palla 1, J. Brand 1, R. Cesaroni 2, G. Comoretto 1, and M. Felli 1

The RLTH sample was derived according to the following criteria:


- (1) sources with galactic latitude $|b| \le 10^{\circ}$;
- (2) FIR colours: $0.61 \le [60 25] \le 1.74$, and $0.087 \le [100 60] \le 0.52$;
- (3) no upper limits for the flux at 25, 60, and 100 μm;
- (4) no positional coincidence with known H II regions;
- (5) $F_{60} \ge 100 \,\text{Jy}$, to select sources with higher expected H_2O flux and limit the sample to a manageable number;

In the definition of our sample we added a further instrumental constraint:

(6) declination $\delta \ge -30^{\circ}$.


¹ Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy

² Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D(West)-5300 Bonn 1, Federal Republic of Germany

Wood & Churchwell 1989

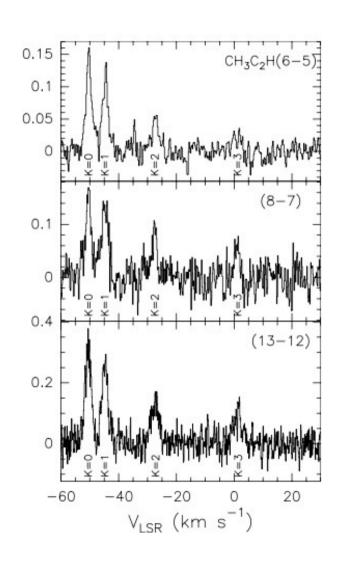
A Sample of Massive Young Stellar Objects

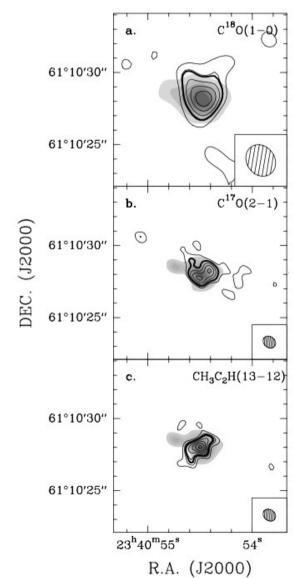
Talk by Sergio Molinari

"high" sources:

- More active
 - UCHII, but
 also younger
 → MP/YSO
- More H₂O masers
 (29%)
 135 "low sources
 have HCO+

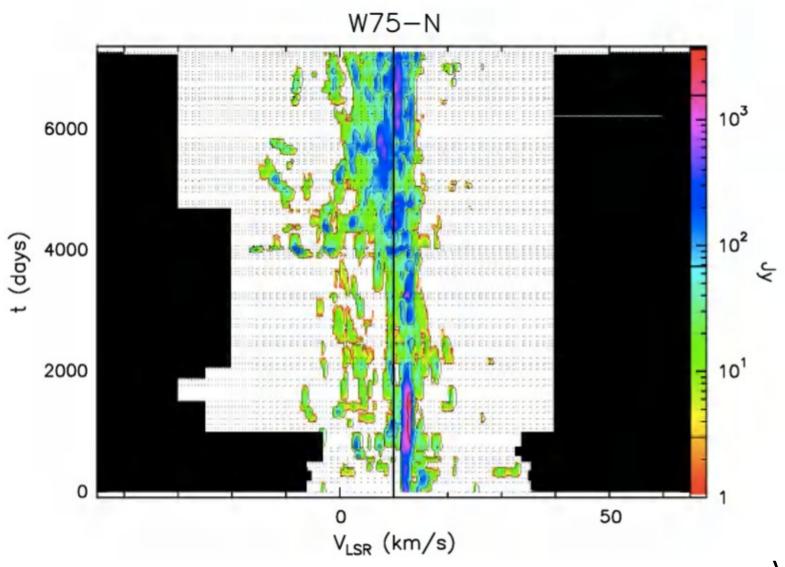
"low" sources:


- •less active
 - UCHII, but also younger
- •fewer H₂O (9%) masers

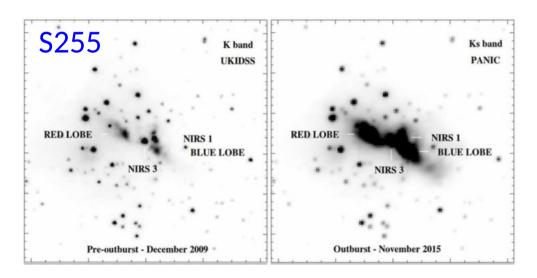

Palla+ 1991, 1993 Molinari+ 1996, 1998, 2000

Example: IRAS 23385+6053: A candidate protostellar massive object*

F. Fontani¹, R. Cesaroni², L. Testi², C. M. Walmsley², S. Molinari³, R. Neri⁴, D. Shepherd⁵, J. Brand⁶, F. Palla², and Q. Zhang⁷

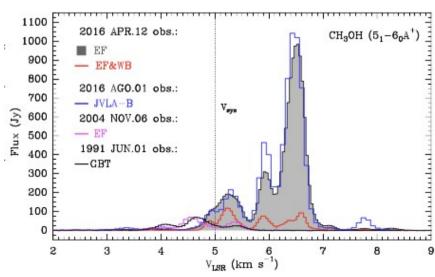

A&A **414**, 299 (2004)

20 y monitoring of ~40 H₂O masers with Medicina



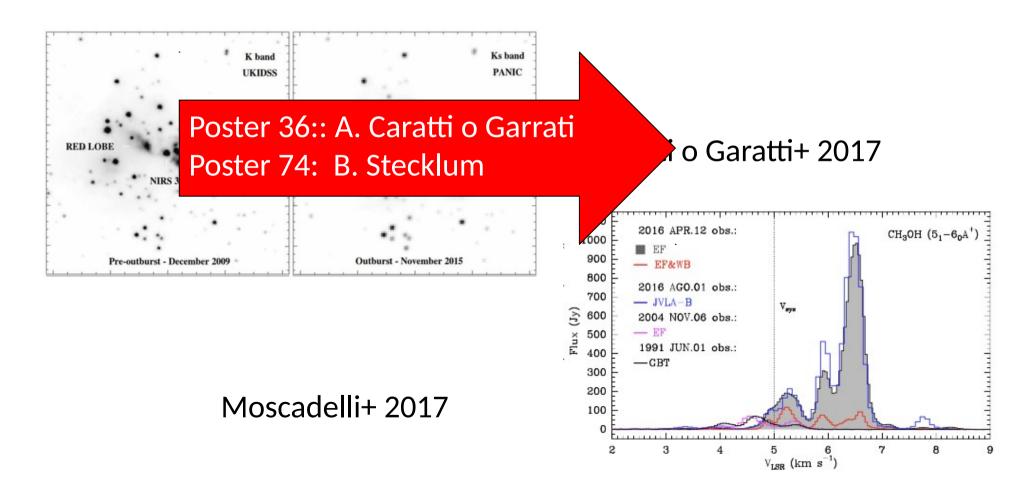
Valdettaro+ 2002 Brand+ 2003, 2005 Felli+ 2007

Maser monitoring can have big pay-off!!


Recently discovered strong outburst of high mass YSO were accompanied (even preempted?) by very strong maser outbursts

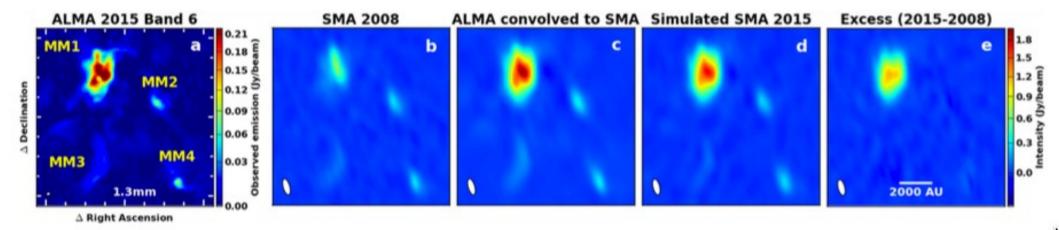
Scaled up FUOR accretion episodes?

Moscadelli+ 2017


Factor ~10 luminosity increase Caratti o Garatti+ 2017

The value of maser monitoring

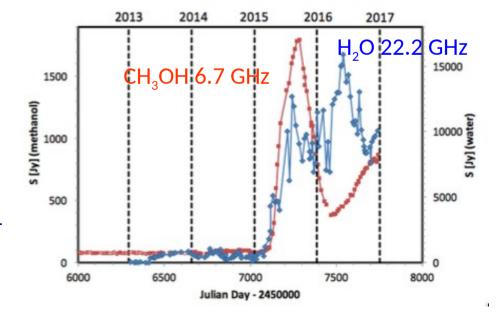
Recently discovered strong outburst of high mass YSO were accompanied (even preempted?) by very strong maser outbursts


Scaled up FUOR accretion episodes?

An Extraordinary Outburst in the Massive Protostellar System NGC 6334I-MM1: Quadrupling of the Millimeter Continuum

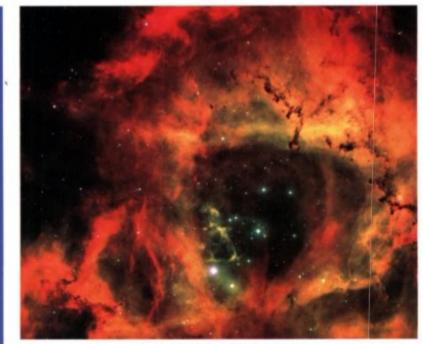
T. R. Hunter¹, C. L. Brogan¹, G. MacLeod², C. J. Cyganowski³, C. J. Chandler⁴, J. O. Chibueze^{5,6,7}, R. Friesen⁸, R. Indebetouw^{1,9}, C. Thesner⁷, and K. H. Young¹⁰

ApJ 2017 March



Luminosity surge by a factor ~70 ← Sudden accretion event?

Persistent, long-term monitoring


Hartebeesthoek Radio Observatory 26m telescope

Steven W. Stahler Francesco Palla

The Formation of Stars

Urheberrechtlich geschütztes Material

Chapter 15: Interstellar Masers

Water maser research is a significant part of Francesco's legacy

- •The Medicina data, taken for themselves, provide valuable targets for
 - searches for embedded, active, accreting very young stellar objects
 - trigonometric parallax Galactic structure surveys
- •They also were are the starting point of a large scale program to systematically study high-mass young stellar objects
- •Future, closely spaced, rapidly reduced variability surveys may point to key objects for the study of episodic accretion events