

Malcolm Walmsley 1941–2017

University of Dublin Trinity College

Coláiste na Tríonóide

College of the University of Dublin

Beginnings

Some Problems in the Theory of Radio Sources

and Planetary Nebulae

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Physics

by

Charles Malcolm Walmsley

Committee in charge:

Professor Geoffrey R. Burbidge, Chairman

Professor Robert J. Gould

Professor William G. Mathews

Professor Marshall H. Cohen

Professor George E. Backus

THE ASTROPHYSICAL JOURNAL, Vol. 155, January 1969

LYMAN-LINE DECREMENTS IN LOW-DENSITY PLANETARY NEBULAE

C. M. WALMSLEY AND W. G. MATHEWS Department of Physics, University of California, San Diego Received May 13, 1968 Astron. & Astrophys. 11, 65-69 (1971)

On the Interpretation of the Pulsar Dispersion Measure

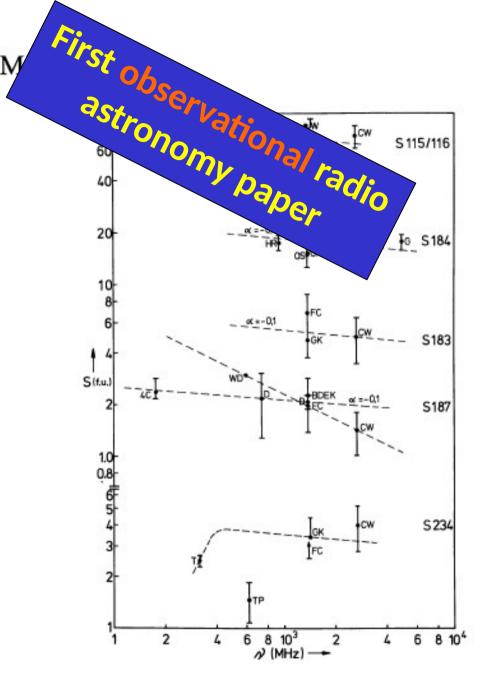
MICHAEL GREWING and MALCOLM WALMSLEY

Max-Planck-Institut für Radioastronomie, Bonn

and

Institut für Astrophysik und Extraterrestrische Forschung, Bonn

Received September 28, revised November 9, 1970


Astron. & Astrophys. 23, 117-124 (1973)

Observations of Optical Nebulae at 2695 M

E. Churchwell and C. M. Walmsley Max-Planck-Institut für Radioastronomie, Bonn

Stockert 25m (18' FWHM)

Astron. & Astrophys. 41, 121 – 132 (1975)

A Study of the Nebulae S 206 and S 209

C. M. Walmsley and E. Churchwell

Max-Planck-Institut für Radioastronomie, Bonn

I. Kazès and A. M. Le Squéren

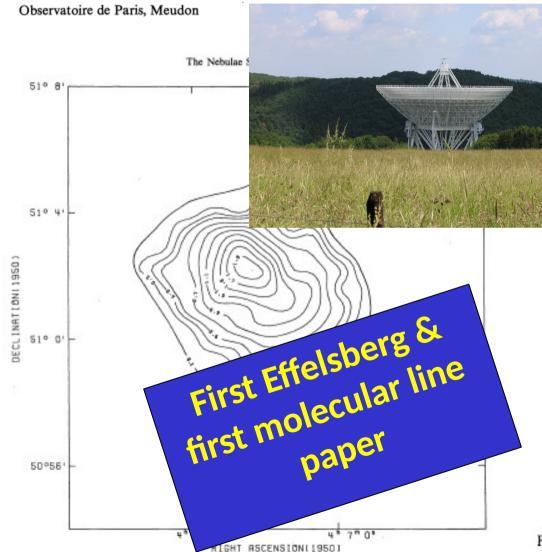
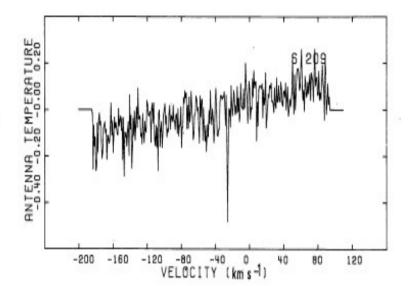



Fig. 2b. 10.7 GHz map of S 209. HPBW=1.3 arcmin

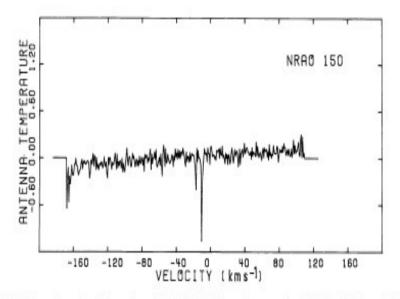
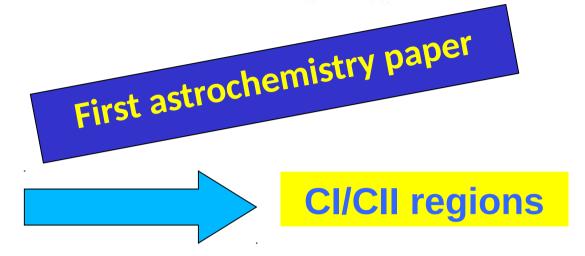



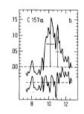
Fig. 4. H₂CO (1₁₀-1₁₁ transition at v=4829.66 MHz) spectrum against S 206, S 209 and NRAO 150

Thermal and Ionization Equilibrium in a Dense Hydrogen Cloud

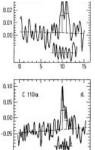
Malcolm Walmsley

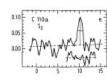
Max-Planck-Institut für Radioastronomie, Bonn

Astron. & Astrophys. 35, 49-56 (1974)


The Frequency Dependence of the Carbon Recombination Line

D. Hoang-Binh


Observatoire de Paris, Meudon, and Max-Planck-Institut für Radioastronomie, Bonn


C. M. Walmsley

Max-Planck-Institut für Radioastronomie, Bonn

An electron density of $10 \,\mathrm{cm^{-3}}$ and a kinetic temperature of 100 K are the approximate parameters of the best fitting models.

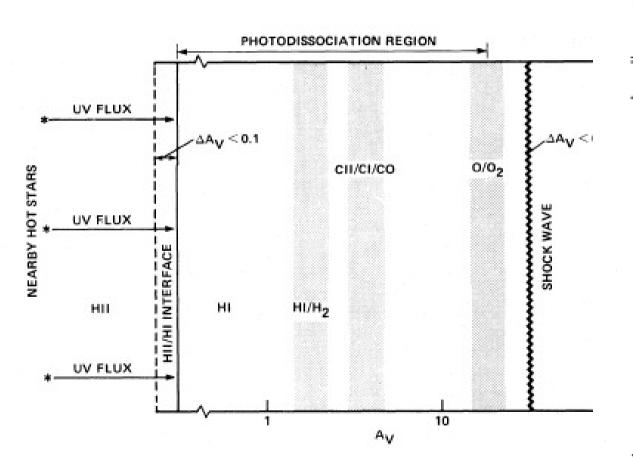
THE ASTROPHYSICAL JOURNAL, 291:722-746, 1985 April 15

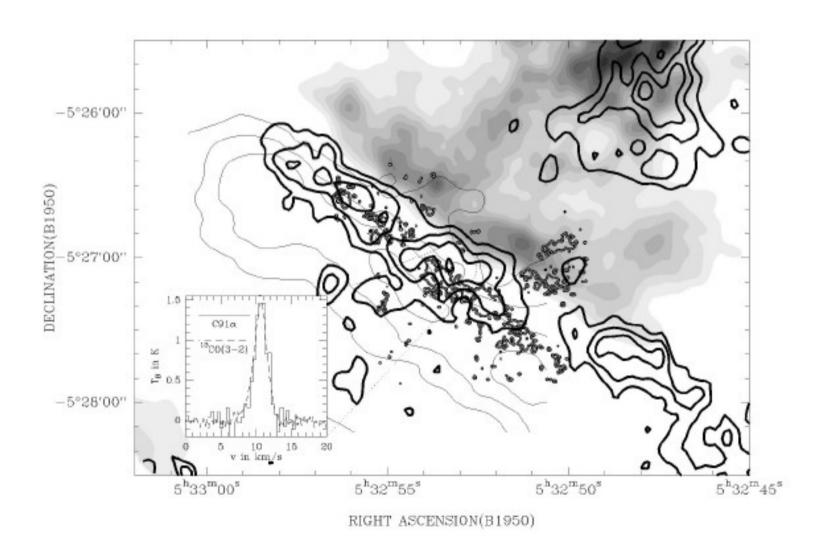
© 1985. The American Astronomical Society. All rights reserved. Printed in U.S.A.

PHOTODISSOCIATION REGIONS. I. BASIC MODEL

A. G. G. M. TIELENS AND DAVID HOLLENBACH

NASA/Ames Research Center, Moffett Field, California




TABLE 2 STANDARD MODEL PARAMETERS

Parameter	Standard Model
n ₀ (cm ⁻³)	2.3(5)
G ₀	1.0(5)
δv_d (km s ⁻¹)	2.7
d _c	3.0(-4)
A	5.0(-4)
A 81	7.9(-7)
A s	7.9(-6)
A F.	2.5(-7)
A _{Me}	1.3(-6)
F _{IR} (ergs cm ⁻² s ⁻¹)	5.0(2)
$T_0(\mathbf{K})$	75
T _{100 µm} ·····	3.0(-1)
δ ₄	1.0
δ_{uv}	1.8
k _{up}	1.8
Y	1.0(-1)
E / 10	6.0
E _d (eV)	0.0

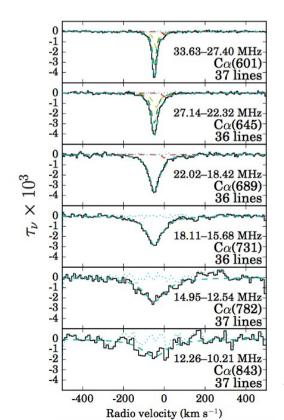
Note.—Numbers in parentheses: $2.3(5) = 2.3 \times 10^5$.

CARBON RADIO RECOMBINATION LINES IN THE ORION BAR.

F. Wyrowski, P. Schilke, P. Hofner, And C. M. Walmsley

THE ASTROPHYSICAL JOURNAL, 260:317-325, 1982 September 1

© 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A.


THE INFLUENCE OF DIELECTRONIC-LIKE RECOMBINATION AT LOW TEMPERATURES ON THE INTERPRETATION OF INTERSTELLAR, RADIO RECOMBINATION LINES OF CARBON

C. M. WALMSLEY

Max-Planck-Institut für Radioastronomie, and Department of Physics, University of Illinois at Urbana-Champaign

AND

W. D. WATSON

Salas+ 2017

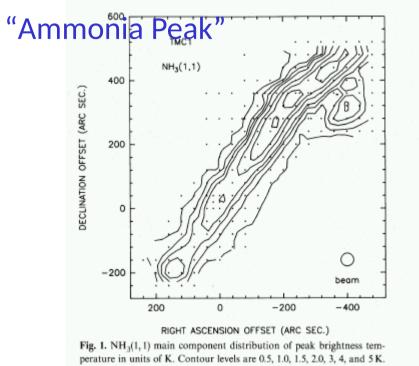
First NH₃ paper

Molecular Observations of a Possible Proto-Solar North Color of Solar Of Solar Of Solar North Color of Solar North Color of Solar North

E. Churchwell*, G. Winnewisser and C. M. Walmsley

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn, Federal Republic of Germany

Received October 20, 1977

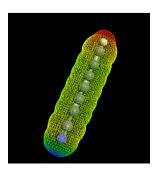

Summary. We have detected in TMC 1 (Taurus Molecular Cloud 1), a small molecular condensation located near the south eastern edge of Heiles' cloud 2, strong emission from the J=9-8 transition of HC₅N and the J=1-0 transition of HC₃N. In addition we report measurements of the 211-212 transition of H2CO in absorption, and the J, K=1,1 transition of NH_3 in emission as well as OH observations. All molecular transitions have a linewidth of $\Delta v \sim 0.5$ km s⁻¹. A detailed map of the J=9-8 transition of HC₅N indicates that TMC 1 is elliptical in shape with linear dimensions > 0.15 × 0.06 pc. There is little velocity dispersion throughout the cloud (≤0.2 km s⁻¹), which has a density of $\sim 3 \cdot 10^4$ cm⁻³ and a mass of about 1 M_{\odot} . The rotation period of TMC 1 is at least 2 106 yr and it is probably an example of star formation on a small scale.

of the J=4-3 transition of HC₅N by MacLeod et al. (1978) and the J=9-8 transition of HC₇N by Kroto et al. (1977). Although the angular size of Cloud 2 is in excess of 1°.5, the area where the more complex molecules have so far been found is a small condensation located near the south-eastern edge of Cloud 2, in an opaque region centered near $\alpha=4^{\rm h}$ 38^m 38^s, $\delta=25^{\circ}$ 36′ 00″. In the following, we will refer to this small cloud as the Taurus Molecular Cloud 1, or TMC 1. We report in TMC 1 the detection and partial mapping of the J=9-8 transition of HC₅N at 23.96 GHz, the detection of the J=1-0 transition of HC₃N near 9.1 GHz, and observations of the 2 cm H₂CO 2₁₁-2₁₂ K-doublet transition and the two main 18 cm transitions of OH.

II. Summary of Cloud 2 Properties

TMC-1

Olano, Walmsley, & Wilson 1988


perature in units of K. Contour levels are 0.5, 1.0, 1.5, 2.0, 3, 4, and 5 K. The points represent the observed positions. Map origin is $\alpha(1950) = 04^h38^m38.0^s$, $\delta(1950) = 25^\circ36'$

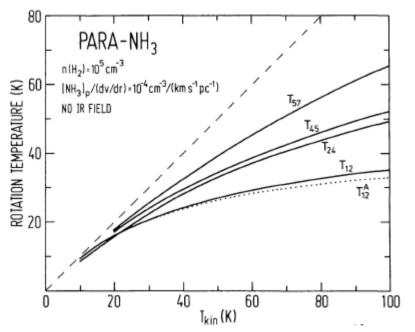
"Cyanopolyyene Peak" -200 RIGHT ASCENSION OFFSET (ARC SEC.)

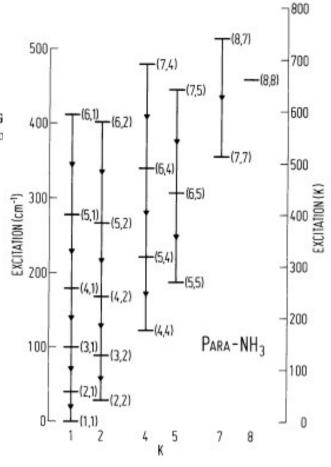
Fig. 2. Distribution of peak brightness temperature for J = 21-20 HC₇N. Contour levels are 0.5, 1.0, 1.5, and 2 K. Other details are as in Fig. 1

Churchwell, Winnewisser, & Walmsley 1978

Query Results from the ADS Database

Selected and retrieved 406 abstracts.


#	Bibcode	Score	Date		of Links				
	Authors	Title		Access Control Help					
1	□ <u>1978A&A67139C</u>	0.502	06/1978	<u>A</u>	<u>F</u> <u>G</u>	<u>R</u> <u>C</u>	<u>s</u>	<u>U</u>	
	Churchwell, E.; Winnewisser, G.; Walmsley, C. M.	Molecul	ar observations	of a pos	ssible proto-solar	nebula in a dark	cloud	in Taurus	
2	□ <u>1978ApJ225L.139L</u>	0.502	11/1978	<u>A</u>	<u>F</u> <u>G</u>	<u>R</u> <u>C</u>			
	Langer, W. D.; Wilson, R. W.; Henry, P. S.; Guelin, M.	Observations of anomalous intensities in the lines of the HCO/plus/ isotopes							
3	□ <u>1980BAAS12485F</u>	0.497	03/1980		<u>F</u> <u>G</u>				
	Fox, K.; Jennings, D. E.	Observations of HC_5N at 18.6, 21.3, 24.0, and 26.6 GHz in Sgr B2, TMC-1, and IRC+10216							
4	□ 1980ApJ242541K	0.497	12/1980	Α	F G	<u>R C</u>	<u>s</u>		
	Kutner, M. L.; Machnik, D. E.; Tucker, K. D.; Dickman, R. L.	Search for interstellar pyrrole and furan							
5	□ <u>1980ApJ242L87B</u>	0.497	12/1980	<u>A</u>	<u>F</u> <u>G</u>	<u>R</u> <u>C</u>	<u>s</u>	<u>0</u>	
	Benson, P. J.; Myers, P. C.	Detection of HC5N in four dark clouds							
6	□ <u>1981MNRAS.19415P</u>	0.497	01/1981	<u>A</u>	<u>E F G</u>	<u>R</u> <u>C</u>			
	Phillips, J. P.; White, G. J.	333, L1778 and l	L129						


Astron. Astrophys. 122, 164-170 (1983)

Ammonia as a molecular cloud thermometer

C. M. Walmsley1 and H. Ungerechts2

² I. Physikalisches Institut der Universität Köln, Zülpicher Strasse 77, D-5000 Köln, Federal Republic o

Mon. Not. R. astr. Soc. (1988) 235, 229-238

A recalibration of the interstellar ammonia

thermometer

- G. Danby Department of Physics and Astronomy, University College, Gower Street, London WC1E 6BT, UK
- D. R. Flower Physics Department, The University, Durham DH1 3LE, UK
- P. Valiron Groupe d'Astrophysique, CERMO, BP 68, F-38402 St Martin d'Hères, France
- P. Schilke and C. M. Walmsley Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn 1, FRG

¹ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn 1, Federal Republic of G

Astron. Astrophys. 66, 431-435 (1978)

Detection of the ${}^{2}\Pi_{3/2}$, J=9/2 Λ -Doublet Line of OH

A. Winnberg, C. M. Walmsley and E. Churchwell

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Boi

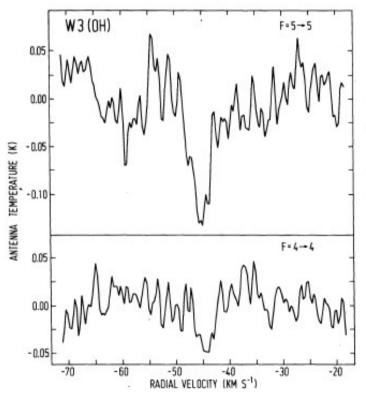
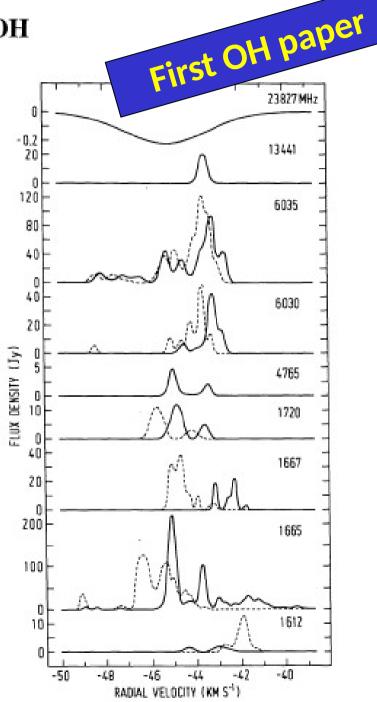
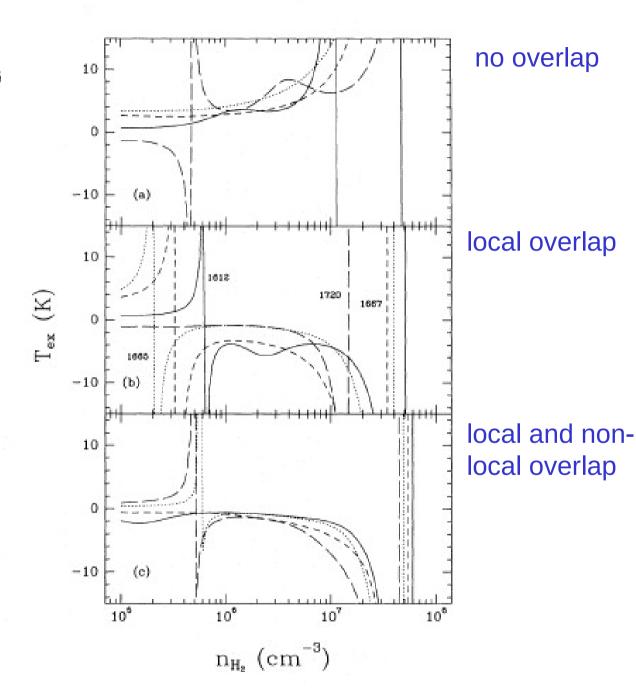



Fig. 1. The ${}^2\Pi_{3/2}$, J=9/2, F=5-5 and F=4-4 OH Λ -doublet lines observed toward W3(OH). The radial velocity is relative to L.S.R. Baseline fits have been subtracted (see Section 3)

+ Baudry, Guilloteau, Walmsley, Wilson, Winnberg, ...



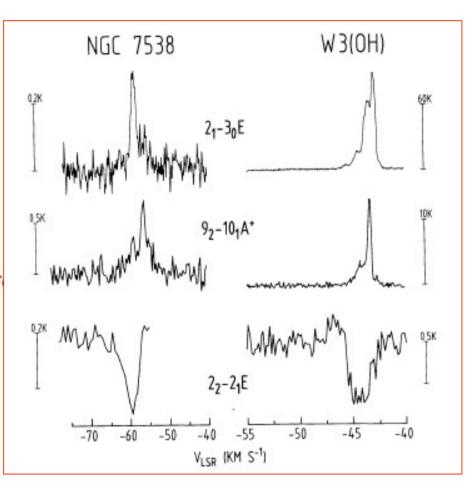
Astron. Astrophys. 241, 537-550 (1991)

OH maser models revisited

R. Cesaroni and C.M. Walmsley

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 6

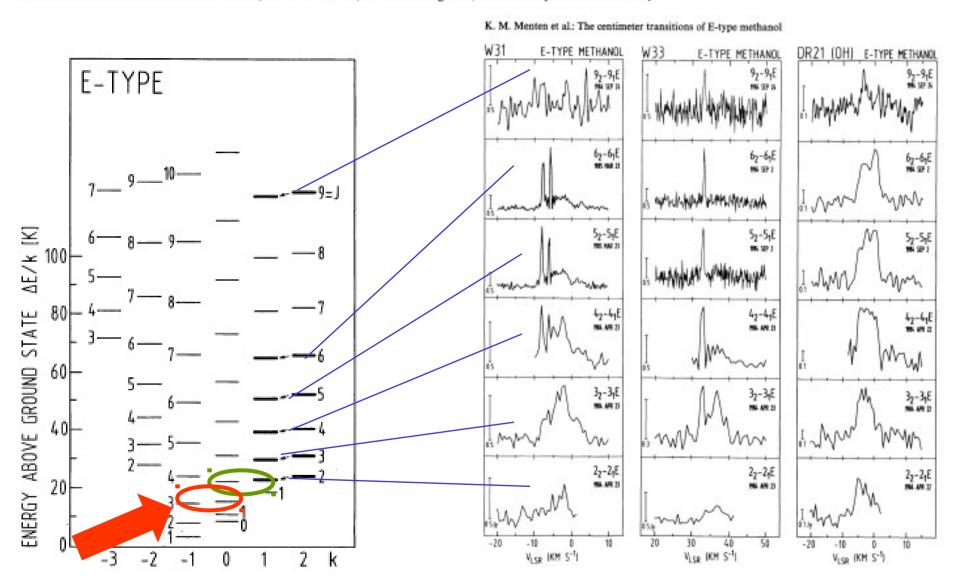
First CH₃OH maser paper


Astron. Astrophys. 147, L19-L22 (1985)

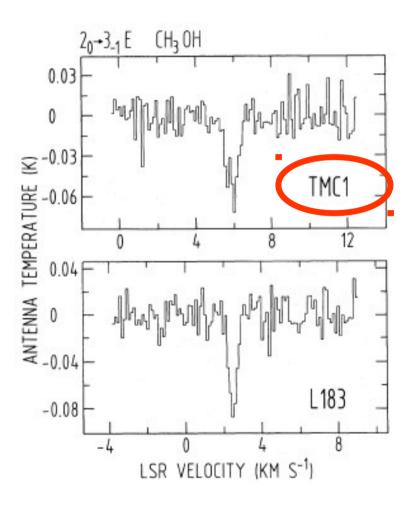
Letter to the Editor

The discovery of a new masering transition of interstellar methanol

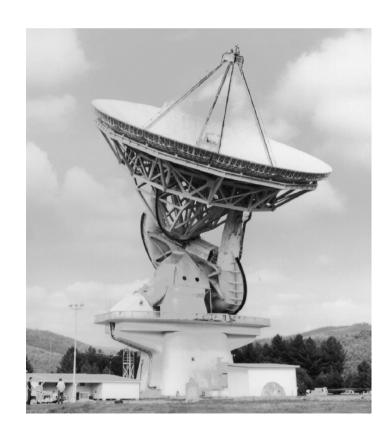
T. L. Wilson, C. M. Walmsley, K. M. Menten, and W. Hermsen

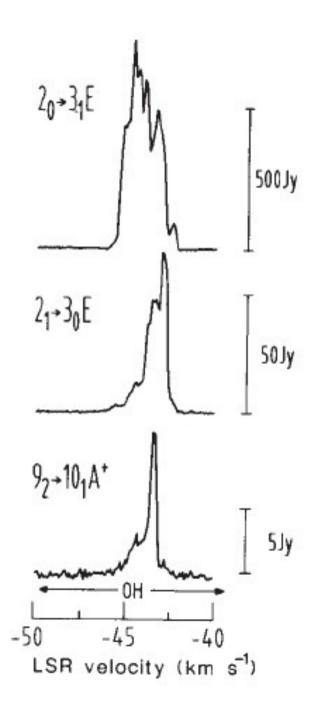

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn 1, F

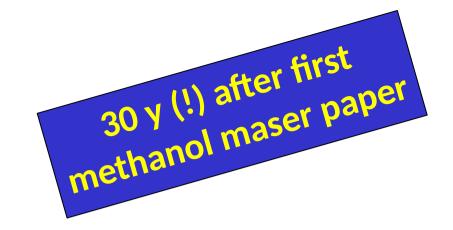
The centimeter transitions of E-type methanol


K.M. Menten, C.M. Walmsley, C. Henkel, and T.L. Wilson

Max-Planck-Institut für Radioastronomie, D-5300 Bonn 1, Auf dem Hügel 69, Federal Republic of Germany


Anti-inversion of the 12.1 GHz methanol line towards dark clouds


C.M. Walmsley 1, W. Batrla 2, H.E. Matthews 3. ** and K.M. Menten 1. *



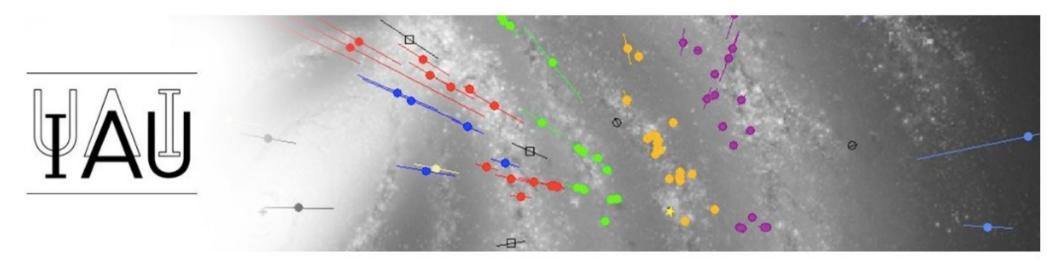
Detection of strong methanol masers towards galactic H II regions

W. Batrla*, H. E. Matthews†, K. M. Menten‡ & C. M. Walmsley‡

A&A 592, A31 (2016)

DOI: 10.1051/0004-6361/201527974

© ESO 2016


Physical characteristics of bright Class I methanol masers

S. Leurini¹, K. M. Menten¹, and C. M. Walmsley^{2,3}

Astrophysical Masers: Unlocking the Mysteries of the Universe

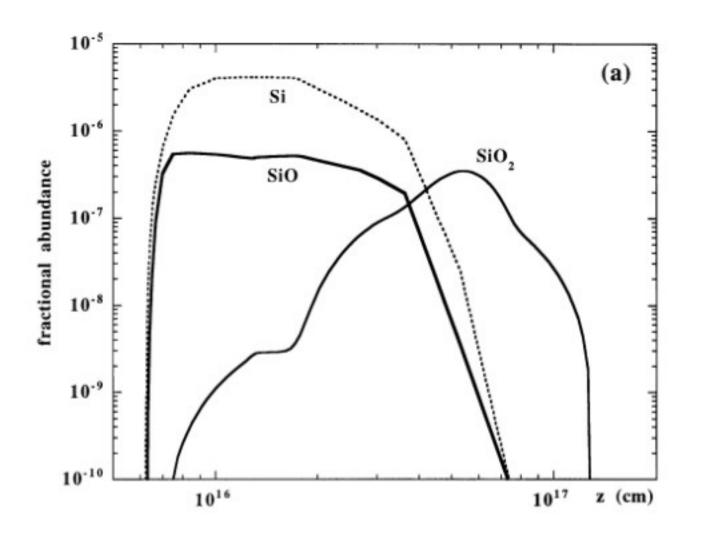
IAU Symposium 336 | Cagliari, 4-8 September 2017

Home

Search ...

Q

This conference is dedicated to the memory of Malcolm Walmsley (1941-2017)


MENU

- HOME
 - · Topics Included
- SOC & LOC

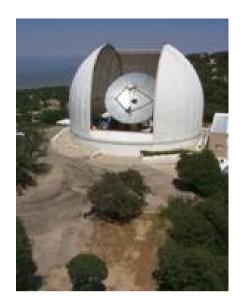
SiO production in interstellar shocks*

Longterm Collaborations

P. Schilke¹, C.M. Walmsley², G. Pineau des Forêts³, and D.R. Flower⁴

THE ASTROPHYSICAL JOURNAL, 256:151-155, 1982 May 1 © 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A.

FeO ⁵Δ₄ J=5–4 153.135


A SEARCH FOR INTERSTELLAR AND STELLAR IRON MONO.

GHz A. J. MERER

University of British Columbia

C.M. WALMELES Max-Planck-Institut für Radioastrot is at Urbana-Champaign

> E. CHU University of Wisc Received 1981 September 17; acc

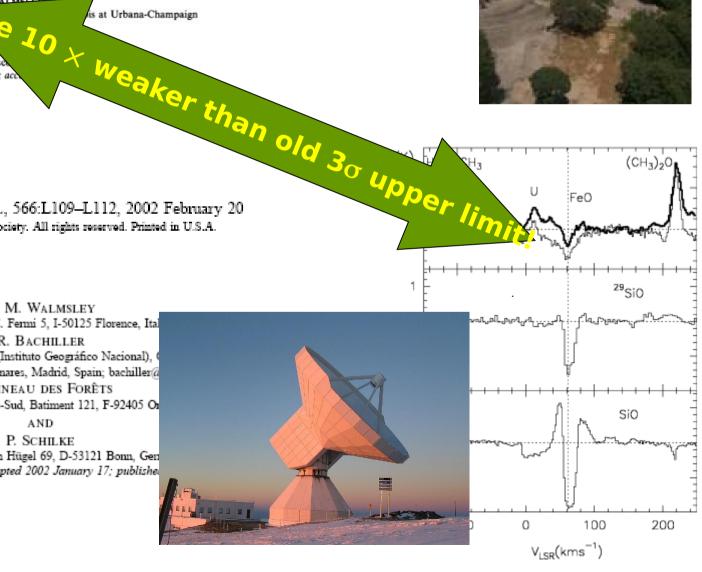
THE ASTROPHYSICAL JOURNAL, 566:L109-L112, 2002 February 20 © 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

C. M. WALMSLEY

Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Florence, Ital

R. BACHILLER

Observatorio Astronómico Nacional (Instituto Geográfico Nacional), E-28800 Alcalá de Henares, Madrid, Spain; bachiller@

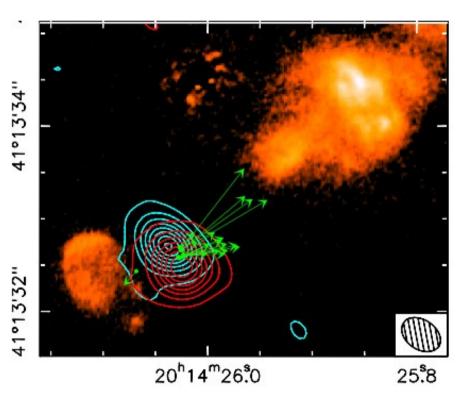

G. Pineau des Forêts

Institut d'Astrophysique Spatiale, Université de Paris-Sud, Batiment 121, F-92405 Or

AND

P. SCHILKE

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Gen Received 2001 December 21: accepted 2002 January 17: published



ASTRONOMY AND ASTROPHYSICS

Unveiling the disk-jet system in the massive (proto)star IRAS 20126+4104

R. Cesaroni¹, M. Felli¹, T. Jenness², R. Neri³, L. Olmi⁴, M. Robberto^{5,6}, L. Testi^{1,7}, and C.M. Wa

 $CH_3CN(12-11)$ (a) Qδ (b) 0.2 -0.2 -0.4Δα (") V_{LSR} (km/s) (c) -0.2 SW NE 0.2 0 $\Delta_{\parallel}(")$

Cesaroni+ 2014

CO DEPLETION IN THE STARLESS CLOUD CORE L1544

P. CASELLI AND C. M. WALMSLEY

Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy; caselli@arcetri.astro.it, w
M. TAFALLA

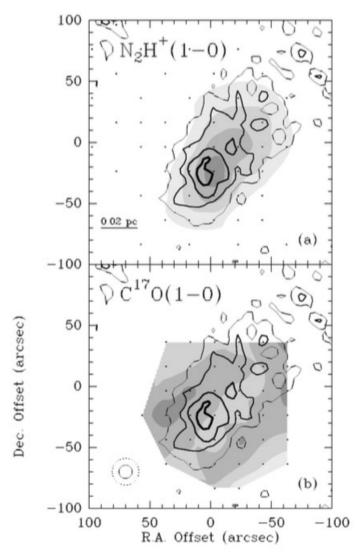
Observatorio Astronómico Nacional, Apartado 1143, E-28800, Alcalá de Henares (Madrid), Spai

L. DORE

Dipartimento di Chimica "G. Ciamincian," Università di Bologna, Via Selmi 2, I-40126 Bologna, Ital

AND

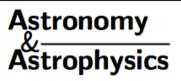
P. C. MYERS


Harvard-Smithsonian Center for Astrophysics, MS 42, 60 Garden Street, Cambridge, MA 02138; pm Received 1999 July 9; accepted 1999 August 4; published 1999 August 27

Also by Caselli, Walmsley et al:

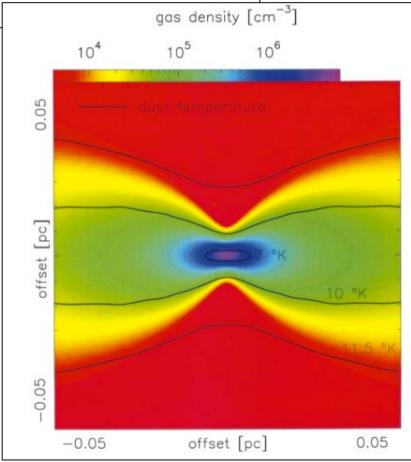
- Deuteration
- Ionization fraction

•



Theoretical studies

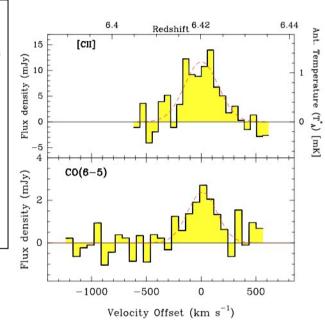
A&A 376, 650-662 (2001)

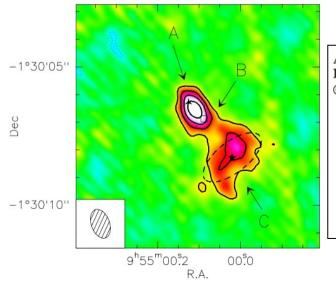

DOI: 10.1051/0004-6361:20010778

© ESO 2001

The dust temperature distribution in prestellar cores

A. Zucconi¹, C. M. Walmsley², and D. Galli²

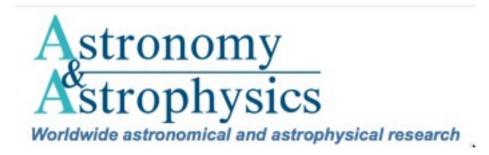

The high z Universe


A&A 440, L51–L54 (2005) DOI: 10.1051/0004-6361:200500165 © ESO 2005

Astronomy Astrophysics

First detection of [CII]158 μ m at high redshift: vigorous star formation in the early universe

R. Maiolino¹, P. Cox², P. Caselli¹, A. Beelen³, F. Bertoldi⁴, C. L. Carilli⁵, M. J. Kaufman⁶, K. M. Menten³, T. Nagao^{1,7}, A. Omont⁸, A. Weiß^{9,3}, C. M. Walmsley¹, and F. Walter¹⁰


A&A 543, A114 (2012) DOI: 10.1051/0004-6361/201118705 © ESO 2012 Astronomy Astrophysics

Resolved [CII] emission in a lensed quasar at $z = 4.4^*$

S. Gallerani^{1,2}, R. Neri², R. Maiolino^{1,3}, S. Martín⁴, C. De Breuck⁴, F. Walter⁵, P. Caselli⁶, M. Krips², M. Meneghetti^{7,8}, T. Nagao⁹, J. Wagg⁴, and M. Walmsley^{10,11}

Editor Supreme

New scientific editorial structure for the Letters section (May 2005)

The Letters Editor, Dr. P. Schneider, will complete his terms of service on 31 January 2006. A&A is indebted to him for his thoughtful and competent editing over the past several years. As a consequence of his departure, the Board has decided to restructure the manner in which the Letters will be handled as of 1 January 2006. The Associate Editor-in-Chief, Dr. M. Walmsley, will also become Editor-in-Chief for the Letters, and he will forward the Letters to the appropriate topical Associate Editor to organize the reviewing process. Likewise, the Editor-in-Chief, Dr. C. Bertout, will become the Associate Letters-Editor-in-Chief. This change will permit a more specialized treatment of Letters in the future and also allow Letters to benefit from language editing. Hence, after 1 January 2006, manuscripts for Letters should be submitted via the A&A Manuscript Management System (MMS) that is already in place for Main Journal submissions. Letters submitted before that will be handled by the current Letters Editor even after 1 January 2006.

Malcolm made numerous

fundamental contributions to the
physics and chemistry of star

formation and the interstellar

medium. He was an exceptional
scientist, a highly esteemed

colleague and a true gentleman.