

Young Brown Dwarfs: Testing star formation across environments

Kora Muzic

CENTRA University of Lisbon, Portugal

A. Scholz (St. Andrews)R. Jayawardhana (York)V. C. Geers (UK ATC)R. Schoedel (IAA-CSIC), et al.

Outline

SONYC survey – brown dwarfs in nearby star forming regions

New program to look for brown dwarfs in massive young clusters – RCW 38

Bastian et al. (2010)

SONYC

Substellar Objects in Nearby Young Clusters

Two main goals:

- (I) Establish the **deep** substellar IMF in various SFRs, using **consistent** methodology
- (II) Provide clean samples of brown dwarfs groundwork for characterization of their properties

SONYC Summary

2006 – 2015 (tbc)

15 nights at 8-m telescopes

5 regions

- > 700 spectra
- ~ 100 confirmed brown dwarfs & very low-mass stars

9 papers

browndwarfs.org/sonyc

Candidate selection

Cha-I

Muzic et al. (2011)

ρ-Oph

ρ-Oph

Spectroscopy is mandatory!

SONYC

Mass in Jupiter masses

SONYC

Mass in Jupiter masses

IMF $dN/dM \propto M^{-\alpha}$

 $\alpha \sim 0.6$ - 1.0

Dense cluster – more BDs?

Initial $<\rho> \sim 10^2 M_{\odot} \text{ pc}^{-3} \text{ IC348}$ $10^3 M_{\odot} \text{ pc}^{-3} \text{ NGC1333}$ Parker & Alves de Oliveira (2017)

Dense cluster – more BDs?

Most BD formation theories predict some dependence on environment

Density:

- any theory that requires ejection
- gas infalling on star clusters
- turbulent fragmentation framework

Presence of O stars:

- photoionization of intermediate-mass cores

(Bate 2012; Padoan & Nordlund 2002; Bonnell et al. 2008; Vorobyov et al.; Whitworth & Zinnecker 2004)

Dense cluster – more BDs?

Most BD formation theories predict some dependence on environment

Density:

- any theory that requires ejection
- gas infalling on star clusters
- turbulent fragmentation framework

Presence of O stars:

- photoionization of intermediate-mass cores

(Bate 2012; Padoan & Nordlund 2002; Bonnell et al. 2008; Vorobyov et al.; Whitworth & Zinnecker 2004)

Most of the nearby SFRs are fairly similar **Ultimate test:** much denser environment, many OB stars

Testing the environmental differences

Massive clusters are far away!

10 MJup @1 Myr, 1 kpc, Av=0-10 \rightarrow H=18.9-20.8

New program to observe selected clusters with VLT and Gemini-S

RCW 38

RCW 36

NGC 2244

RCW 38

AO imaging with NACO/VLT

Young: ~1 Myr

Dense: densest young cluster within 4 kpc (MYStIX survey)

Density wrt other SFRs: > 2 times that of ONC ~10 NGC1333 > 25 Cha I

Rich in massive stars: 60 OB candidates (Wolk et al. 2006, Winston et al. 2011)

RCW 38

Muzic et al. (2017, submited)

No evidence for significant environmental differences

The (complicated) case of the ONC

Low-mass content is mass segregated (Andersen et al. 2011)

Older (4-5 Myr) population in front (Alves & Bouy 2012; Bouy et al. 2014)

Not all the surveys use spectroscopy

Conclusions

Census of substellar objects in young clusters mostly complete down to the D-burning limit, in selected regions even down to ~5 MJup

◆ For every brown dwarf, there are 2 - 5 stars

First results in massive young cluster RCW 38: no evidence for environmental differences

 Future: Gaia: distances JWST: 1-2 MJup objects in NGC 1333 (spectroscopy) and RCW 38 (imaging)