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Filamentary	Cloud
n Herschel has	revealed	many	filaments	in	thermal	dust	emissions.		

Filaments	are	regarded	as	basic	building	blocks	of	clouds.
n Near	IR	polarization	extinction	observations	indicate

q Interstellar	magnetic	field	is								to	the	filaments	with	large	column-
density.

q low	column-density	filament	is	extending			 //			to	B.

Serpens	South	Cloud	by	Sugitani	et	al	
(2011).

Taurus	Cloud	(B211/213)	by
Palmeirim	et	al.	(2013).
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Planck Polarization (353GHz)
Planck intermediate results. XXXV (2015). Polarization of Thermal Dust Emission
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B-Field plays a Role in Stability of the Filament? 

n Stability	is	controlled	by	magnetic	flux.

n Clouds	with																	 supercritical
q They	have	no	static	equilibrium.
q Dynamical	contraction

n Clouds	with															 subcritical
q Hydrostatic	equilibria
q Quasi-static	contraction	driven	

by	ambipolar diffusion

n How	about	filamentary	clouds?
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Equilibria	of	Isothermal	filamentary	
Clouds
n No	Magnetic	Field

q Line-mass	[g/cm,	M8/pc]

q Max.	line-mass

(Stodolkiewicz	1963;	Ostriker	1964)
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èNo	equilibria
è dyn.	contraction

 λ < λmax è equilibrium	solution
with	a	finite	density-contrastcritical line-mass of B=0 case
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Magnetized	Filaments
n Model	with	constant	plasma	b

n Model	with	a	constant	mass/flux	ratio

q Line-mass	increases	with	B-field	strength.
n However,	observed	filaments	have	LATERAL	B-
field.
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(Stodolkiewicz 1963)

(Fiege	&	Pudritz	2000a,b)  φ ≡ ρ / Bz（ is	conserved	in	the	radial	contraction）

  (β ≡ p / (Bz
2 / 8π )) B	along	the	filament

B	perp	to	the	filament



Parameters	to	Specify	a	Magnetohydrostatic	Equilibrium
Equilibrium	in	balance	b/w	gravity,Lorentz	
force,	and	thermal	pressure

“Parent” filament

0R

We	consider	a	gas	cylinder	
with	a	uniform	density,	
a	radius	R0,	and	sound	speed	cs
is	immersed	in	a	uniform	B-field	B0
and	external	pressure	pext.
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density	at	the	surface   ρs = pext / cs
2

  ρc / ρs   β0 ≡ pext / (B0
2 / 8π )   R0 / [cs / (4πGρs )

1/2]

After	normalization,	the	problem	contains	3	parameters:

Thin	and	wide	noodle

Density	contrast Ambient	plasma b Radius	of	“Parent” filament

defines	a	way	of	mass-loading

central	density  ρc

Flux
freezing



Result	1 Small	R0=0.5	of	Parent	Cloud

r

  ρc = 10 210 310 B

 λ0 = 12.9 24.9 31.6

  R0 = 0.5 x  x  x

yyy

(1)	Line-mass	λ0 increases	with	central	density	ρc.	
(2)	The	filament	with	low	ρc extends	along	B-field.
(3)	That	with	high	ρc has	a	major	axis	perp to	B-field.

 β0 = 0.03
Cross-section of filament



Result（2） Standard	Model   R0 = 2, β0 = 1

27.6

210
weak B

28.4

300  ρc / ρs = 10

 λ0 = 21.6

(1)	Line-mass l0 increases	with	central	density ρc.
(2)	The	major	axis	is	perpendicular	to	B-field.
(3)	Regions	of	weak	B-field	are	found	near	the	equator.

Hour-glass type B-field.



Central	Density	ρc vs	Line-Mass	λ0 Relation

  (R0 ,β0 )

Models	with	standard	R0

B-field	supports	the	filament

Magnetic
support Increasing 

B-field B0 or 
Flux F1D

center-to-surface	density	ratio rc/rs

No	B-Field

Maximum	mass	supported	by	a	given	Φ1D is	achieved	at ρc/ρs=∞.
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  (R0 ,β0 ) = (2,1)

 β0 = ∞

  Φ1D = R0B0

  ∝ R0 / β0
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Critical	Line-Mass	of	the	Filament

  

λmax ≈ 0.24Φ1D / G1/2

      +1.66cs
2 / G

  Φ1D = R0B0
Mag.	flux	per	unit	length

 λmax

Least	Squares	Method
  Φ1D = R0B0 > 3µG pc

When	the	magnetic	flux	exceeds

maximum line-mass is determined
by the magnetic flux per length.
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Take notice of the similarity to the 
mass formula for a thin disk

  Mmax ≈ Φ2D / 2πG1/2

Empirical	critical	mass	formula

  ≅ 0.16Φ2D / G1/2
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Polarization	of	Thermal	Dust	Emissions	from	
oblate/prolate	dusts	aligned	in	the	B-field	direction.

: angle b/w B and plane of the sky.
: angle b/w projection of B and -axis

C: difference of cross sections perp and parallel to B

  
Q = C ⋅R ⋅F ⋅c ⋅Bν (T )ρ cos2ψ∫ cos2 γ ds

R: reduction factor due to imperfect grain alignment
F: reduction factor due to turbulent B-field
c= /nd

  
U = C ⋅R ⋅F ⋅c ⋅Bν (T )ρ sin2ψ∫ cos2 γ ds

(Draine & Lee 85, 
Fiege & Pudritz 2000)

Relative Stokes parameter

  
q = ρ cos2ψ∫ cos2 γ ds

  
u = ρ sin2ψ∫ cos2 γ ds

(Wardle & Konigl 90)

 
i = ρ∫ ds

Polarization angle and polarization 
degree

Uniform distributions of T and dust 
alignment degree 

γ
ψ η

ρ



Distribution	Function	of	Angle	b/w	B	and	
Filament	axis --- statistical	analysis
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Planck	intermediate	results.	XXXV	(2015).
è α~90	deg for	high-density	portion	log	N>22.08	

high	density

900 45-45-90

If	all	the	filaments	are	observed	
as	perpendicular	pol.	configuration,
filaments	may	have	a	high	density	contrast.	

Even	when	B	perp	filament	in	3D,	for	some
cases,	filaments	seem	to	have	pol	vectors	
parallel	to	them.	
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Dynamical Stability
Numerical simulation using AMR code SFUMATO with T. Matsumoto

(A) Random density perturbation is added to each grid point

SD =0.1,0.01   made by normal random number δρ / ρ = 0

  
ρ = ρequil (xi , y j )+δρ(xi , y j , zk )

δρ/ρ obeys Gauss distribution

(B) Sinusoidal density perturbation is added  

  
ρ = ρequil (xi , y j ) 1+ Acos(2π z / Lz )⎡⎣ ⎤⎦

  A = 0.1,  0.01

(A) (B)

periodic boundary
for the z-direction

Linear perturbation problem is hard to be 
solved, since the Eigenfunction is 2D. 

(B)
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Dynamical Stability

B
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  R0 = 2
  ρc = 10

  Lz = 24

  ρ  and B

  ρ  and B   ρ  and B  
Lx = Ly = 8

random density perturbation
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ρ(x)

ρ(z)

ρ(y)

vx (x) vy(y)

vz (z)

By(x) By(y)

By(z)

3 fragments   Lz = 24

 λMGR ~ 24 / 3= 8

B B



x x

z z
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A Pseudo-disk in Runaway Collapse

  ρ  and B   ρ  and B  ρ  and B

filament cross-section from direction // to B from direction     to B⊥

èFormation of  a Contracting Pseudo-disk 
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sin-wave
random  Lz = 9

sin-wave   Lz = 6   Lz = 24

   λMGR ! 8

  R0 = 2

 β0 = 1

 3< λJ < 6

  λMGR ! 2λJ

δρ
/ρ
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  Lz = 3< λJsin-wave

 0.01

   0.1

     1

     10

     100

     1000



β0 = 0.1

β0 = 1

β0 = ∞

M fragλMGR

β0 = 0.1

β0 = 1

β0 = ∞
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ρ(r) = ρc 1+ r 2

8H 2
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Hanawa, Kudoh, Tomisaka (2017) submitted to ApJ

  
βc =

8πρccs
2

B0
2

Dispersion Relation of  Gravitational Instability
Isothermal cylinder with uniform B-field

  βc = 40

  βc = 4

  βc = 2

  βc = 1.74

Simplification à Uniform  B-field + Pext=0
Eigen-function is 2D

  βc <1.67

Condition for stability
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Conclusion
Stability of  Filament Threaded by Perpendicular B-Field
for 

(1) stable oscillation
(2) gravitational instability
(3) filament fragments into  

 λ < λJ

 λ > λJ

  λMGR ! 2λJ

Gravitational Instability

Instability may be suppressed for small
Typical scales: Separation ~

Mass ~

 βc

(0.1−1)T1
1/2ns,3

−1/2pc

 (1−10)T1
3/2ns,3

−1/2M⊙

  λ0 < λMax (Φ1D ,cs )

ns,3 ≡ ns /10
3cm−3

T1 ≡ T /10K


